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1. Introduction

This report describes recent advances in the analysis of radar target signatures
for the purpose of target identification. The goal of the research has been to de-
velop techniques for automatic classification of radar targets by digital processing of
measured scattering signals. |

Many approaches have been considered for target identification systems. Of these
approaches, we have concentrated on processing the scattering data to extract time
(range) domain scattering features. In particular, we are interested in the ranges of
the dominaut scattering centers, and the amplitude (and polarization) properties of
each scattering center. These scattering center ranges, along with their associated
properties, would form a feature vector for use in a target classification system.

There are two main approaches for extracting the ranges of scattering centers
from measured frequency-domain data. Traditionally, target scattering centers are
found by using Fourier transform techniques to convert the frequency-domain data
into a time-domain, or range-domain, profile [1]. This profile is then searched for
sharp peaks, and the ranges of these peaks form the scattering center range esti-
mates. The amplitudes of the peaks give the magnitudes of the scattered field for
each scattering center when single polarization data is available. Little work has ap-
peared on Fourier processing of multiple polarization data; one method for extracting
polarimetric properties of scattering centers was recently reported in [2].

This report considers a different approach for scattering center extraction: the
parametric modeling approach. In parametric modeling, the target scattering char-
acteristies are described by a model, and the parameters of that model are then
estimated from measured data. The model is chosen so that the model parameters
relate to target scattering centers in a natural way. In addition, the model we have
chosen extends naturally to the case in which data for multiple polarizations are

available.




An outline of the report is as follows. Section 2 describes the parametric modeling
approach in detail, and discusses the advantages of such an approach. Section 3
outlines the technical accomplishments of this research effort. Section 4 concludes

the report.




2. Technical Approach

Assume that a given radar acquires stepped frequency measurements of the (co-

herent) scattering from a target. Denote these measurements as

sa(fi), k=01,...,N—1. (2.1)

Here, the subscripts z and y denote the received and transmitted polarizations of
the radar, respectively; fi denotes the frequency at the kth frequency step. For the
purpose of clarity, we assume that the radar transmits left-circularly polarized signals
and receives both horizontally and vertically polarized fields; thus; both sp(fk) and
$u(fr) are measured. However, other polarizations could be used.

The parametric modeling method involves modeling the target as a set of scat-
tering centers. In particular, we use the Prony, or damped exponential model 3, 4].
In the frequency domain, the model takes the form of sum of damped exponential

terms:

er M| Ans
su(fe) =S| e, o<k N1 (2.2)

sulJx) i=1 | Ay
Here, the A; and p; parameters represent the amplitude, range, and damping factor of
each of the M scattering centers. Each scattering center is characterized by a pole p;,
whose angle /p; gives the range of the ith scattering center, and whose amplitude |p;|
relates to the range dispersion of the scattering center. For an ideal point scatterer,
[p:d = 1, but for realistic targets the scattering will be attenuated slightly as frequency
either increases or decreases, thus |p;| will vary a little bit around one. The complex
amplitudes Ay, and Ay characterize the amplitude and polarization properties of
the 1th scattering center; the amplitude, ellipticity, and tilt of the scattering center
can be found by a simple transformation of A and Ay, [3]. This model has the

advantage that full polarization information is incorporated into a single model; on




the other hand, if not all of the polarization data is available, the reduced data set can
be used to obtain an exponential model with fewer attributes per scattering center.
Parametric modeling of target signatures offers several advantages over traditional

Fourier-based target signature analysis. These include:

o High Resolution: Parametric methods offer higher resolution than can be
obtained by Fourier processing; as a result, lower bandwidth radars may be

used to achieve a desired range resolution.

e Automatic Feature Extraction: The parametric methods we propose di-
rectly estimate the location of scattering centers, and directly estimate a set
of parameters which characterize each scattering center. This is in contract to
Fourier-based processing techniques, in which some sort of feature extraction

procedure must be applied to the estimated range profile of the target.

¢ Separate Characterization of Each Scattering Center: The proposed
parametric models characterize each scatterer with a set of attributes which
include polarization properties, frequency response, and in some cases a de-

scription of the physical nature of that scatterer.




3. Technical Accomplishments

Below we outline the technical accomplishments developed under this research
program.

3.1 Statistical Analysis of TLS-Prony Techniques

The main algorithm we used for estimating the parameters of the exponential
model is the so-called TLS-Prony estimator. This method involves setting up a set of
backward linear equations, and solving for prediction coeflicients using a total-least-
squares (TLS) techniques. The TLS solution involves performing a singular value
decomposition on a data matrix. The zeros of the prediction polynomial associated
with the backward linear prediction coeflicients form the exponential pole estimates.
Once the exponential terms are found, the corresponding amplitude coefficients are
then determined by a least-squares technique. This method is attractive because it is
computationally simple (involving linear algebraic solutions of equations and a single
polynomial rootfinding step), but gives estimates whose statistical properties are close
to optimal.

Our first main contribution is a complete statistical analysis of the poles and
amplitude coeflicients obtained from the TLS-Prony technique when the measurement
data are corrupted by Gaussian white noise. The analysis gives the statistics of
the model coefficients for high SNR. Because the pole and amplitude parameters
relate directly to physical properties of the scattering centers, this analysis gives a
theoretical prediction of scattering center extraction performance in the presence of
noise (see also [5]). In particular, resolution of scattering centers, and accuracy of
scattering amplitudes and polarization properties can be found as a function of SNR
and/or polarization diversity. The statistical theory is compared to Monte-Carlo
simulation results, and found to agree quite well even for moderate SNRs (-5 dB to

5 dB depending on the signal scenario). These results have been published as a M.S.




Thesis by Mr. Ching-Hui Ying [6], and also as a conference paper presented at the
1991 Asilomar Conference [7]. These results have also been accepted for publication
in archival Journal Automatica in a special issue on Statistical Signal Processing and

Control [8]. The Automatica paper is included in Appendix A.

3.2 Computationally Efficient TLS-Prony Estimation Algorithms

A second advance is the development and analysis of TLS-Prony estimation algo-
rithms which have lower computational cost then the standard TLS-Prony method,
but which have almost the same accuracy performance. Specifically, the method
involves decimation of the frequency-domain scattering measurements. Decimation
reduces the length of the data, and gives a large corresponding reduction in compu-
tational cost.

Specifically, the data is processed through several different filtering and decima-
tion blocks. Each of these blocks is designed to estimate the scattering centers of
the target for a particular segment of the range profile. The individual segments
can be processed in parallel, resulting in a significant savings of computation (at an
increase of processing hardware). Alternately, the processing can be done sequen-
tially. In either case, the total number of computations is substantially less than the
computations involved for a single estimate of all scattering centers.

One concern with such an approach is that the statistical accuracy of the resulting
scattering center estimates is lower than the accuracy obtained in a single estimate
approach. To address this issue, we derived analytical expressions which predict the
accuracy of the scattering center range and amplitude (and, in the case of multiple
polarization data, the polarization characteristics of the scattering center as well)
for the decimation-based TLS-Prony algorithm. This analysis again assumes high
SNR, but is shown through comparisons with Monte-Carlo experiments to hold for

moderate and low SNRs as well. The analysis and simulation demonstrate that




the decimation-based algorithm can provide scattering center estimates with almost
the same accuracy as in the single estimation algorithm (the loss is about 2-4 dB),
but at huge computational savings (reductioﬁs by a factor of 20, using sequential
computation on a single CPU, were for typical examples; if parallel computation
hardware is used, the savings would be greater by an additional factor of about 6-
10).

The decimation-based algorithms, and the statistical analysis of these algorithms,
have been published in a conference paper which appeared in the 1992 SPIE Aerospace
Sensing Symposium [9], and has also been submitted to the IEEE Transactions on

Sigual Processing [10]. The IEEE Transactions paper is included in Appendix B.

3.3 Detection and Resolution of Scattering Centers

This research is concerned with detection and resolution of scattering centers
which are estimated from noisy stepped-frequency measurements of that target. The

research is aimed at answering the following questions:

1. As a function of radar bandwidth, SNR, and polarization diversity, how closely

spaced can scattering centers be before they can no longer be resolved?

2. What is the probability of detection versus probability of false alarm for a

scattering center (as a function of bandwidth, SNR, and polarization diversity)?

The question of resolution is closely related to the statistical analysis of the TLS-
Prony methods as described previously. Basically, the resolution question is answered
by appropriately applying these analysis results to the radar scattering application.

The detection question arises from the mechanics of the TLS-Prony methods.
The TLS-Prony methods achieve high resolution by first finding a backward linear
prediction filter of high order. The zeros of this prediction filter are found; some of

these zeros correspond to scattering centers on the target, and some are extraneous,




“computation” zeros. One must then decide which zeros correspond to scattering
centers; this decision is based on the energy of the “mode” associated with that zero.
Because the data are noisy, there will be some times in which a computation zero has
energy which exceeds the decision threshold, giving rise to a false alarm scattering
center. Similarly, there will be times in which a true scattering center has energy
which lies below the threshold, and the scattering center will not be detected. By
varying the threshold, the detection versus false alarm probability can be determined
for various radar parameter settings (such as SNR, polarization, and bandwidth).

The detection question cannot be answered directly in terms of our previous analy-
ses, because these analyses did not include the statistical properties of the extraneous
poles. Thus, we first derived the statistical properties of the extraneous poles; t.his
derivation is presented in [11]. From this analysis, and using properties of the en-
ergy of a scattering center, the desired detection performance measures could then be
calculated.

A conference paper which describes this work was presented at the International
Radar ’92 conference, and appears in the conference proceedings [12]. The This paper

is included in Appendix C.

3.4 Scattering Center Extraction from Measured Radar Data

Finally, we applied our parametric modeling results to some measured S-band
Linear FM scattering data which was supplied to us by Rome Laboratories. Unfor-
tunately, only a limited amount of data was available, and this data was taken at
a single polarization, so we were unable to make extensive comparisons between the
theoretical statistical analyses and the results obtained from measured radar data. In
addition, we had no calibration standard for the data, so it was not possible to com-
pare the estimated scattering centers with a “ground truth”. However, we were able

to conduct limited studies on scattering center accuracy, and on bandwidth extrapo-

o 4]




lation capability, of the TLS-Prony algorithms. Based on these studies, we found that
scattering center resolutions between 2-4 times the resolution capability of Fourier
techniques could be obtained.

The experimental study on measured radar data is presented in detail in the
technical report “Prony Modeling of Linear FM Radar Data,” [11]; this report is
included in Appendix ‘D.




4. Conclusions

This report presents the technical advances in radar scattering center extraction
which were developed under this contract. We have made significant advances in
the development and analysis of Prony-based scattering center estimation. We have
developed theoretical analyses which predict the performance of these algorithms for
scattering center resolution, accuracy of scattering center amplitude and polarization
characteristics, and detection versus false alarm probabilities of scattering centers.
This analysis provides these performance measures as functions of SNR, data length
(which is directly related to data bandwidth), and data diversity (which is directly
related to polarization diversity of the data). The analysis assumes high SNR, but is
shown by Monte-Carlo simulations to be applicable for low to moderate SNRs as well.
We have also applied these algorithms to a limited set of measured radar data, and
~ shown scattering center accuracies of two to four times that obtainable with Fourier-
based techniques. The results of this research have been published in two technical
reports, three conference papers, and two archival journal papers.

Future work should focus on more extensive testing of these methods on measured
data, especially fully polarimetric data. In addition, future signal processing research
on constrained TLS-Prony or other algorithms (in which, for example, the poles are

constrained to lie on or near the unit circle), and on automatic model order selection

are of interest.
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We present an analysis of parameter variance statistics for the TLS-Prony method
applied to damped exponential signals. We derive the covariance matrix of the es-
Uinated parameters for this method. The parameters include the magnitudes and
angles of the poles, and the magnitudes and angles of the amplitude coeflicients. We
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I. Introduction

The problem of estimating model parameters of noisy exponential signals ié an
active area of research. This problem has applications in a number of areas, including
speech processing, deconvolution, radar and sonar signal processing, array processing,
and spectrum estimation. A number of authors have considered various aspects of
this problem [1]-[22], and a large number of algorithms have been developed and
analyzed (8. 11, 12], [16]-[18], [20, 21].

One popular class of algorithms for estimating parameters from noisy exponen-
tial sequences are the subspace-based approaches [1]-[10], [13]-[16], [19]-[22]. These
include the MUSIC algorithm and its enhancements [1, 16, 21}, subspace rotation
methods such as ESPRIT [5, 14, 15, 20, 21], iterative maximum likelihood meth-
ods [6, 7, 13], minimum norm methods [8, 19], and total least squares (TLS) meth-
ods [2,9, 10, 22]. These methods have proven attractive because they exhibit good sta-
tistical performance at a modest computational cost. This has been well-established
by a large number of numerical studies.

More recently, there has been interest in quantitatively evaluating these methods.
To this end, a number of researchers have analyzed the statistical properties of such
algorithms [3. 8. 11. 12. 16. 17, 18. 20, 21]. In [3], Henderson presents a geometric
study of the pole estimation problem, and analyzes the statistical properties of the
prediction coeflicients when the Hankel data matrix is corrupted by an i.i.d. noise
matrix. Several authors have presented results relating to pole angle (frequency)
estimates from arrays when the exponential signals are undamped, e.g., [8, 11, 16,

17, 20, 21, 23]. A related perturbation analysis of SVD-based methods is presented
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in {24, 25, 26, 27] and applied to both frequehcy estimation and threshold analysis
for exponential modes. In [12] Hua and Sarkar present an angle-only analysis for
the least squares Prony method for the poles of undamped exponentials. Less has
appeared which considers the statistical properties of the parameters for damped
exponentials. Porat and Friedlander [28] consider the related problem of ARMA
systemn identification using SVD-based approaches. Hua and Sarkar [18] present an
analysis for the pole estimates of damped exponential signals using their matrix pencil
method, but have not presented the statistical properties of the amplitude coefficients.

This paper presents an extension of the above works to treat a general exponential
case. We introduce a complete statistical derivation for the poles and amplitude
coefficients estimated usinvg a TLS-Prony scheme where signals consist of arbitrary
damped exponential terms in noise. We provide complete statistics for the individual
pole parameters for an exponential model in which the poles may lie on, inside,
or outside the unit circle. In addition, we derive the statistical properties of the
amplitude coefficients associated with these exponential modes.

The results of this paper provide a sound basis for performance analyses of the
TLS-Prony estimation method. We extend previous works by considering the general
damped case, as well as by including amplitude coefficient parameters in addition to
pole parameters. These results‘provide the tools to analyze various situations and
evaluate the potential success of applying the TLS-Prony estimation algorithm.

The TLS-Prony estimation procedure is a multi-snapshot extension of the algo-
rithm presented in [9, 10). The advantage of singular value decomposition (SVD) in

noise cleaning of the Toeplitz data matrix is well-known. The multiple snapshot incor-
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poration 1s a straightforward one in'which more than one set of amplitude coefficients
corresponds to the set of poles. The procedure is discussed in Section II.

The statistical derivation for this procedure is based on a first order perturbation
analysis; thus the analysis assumes high SNR. We derive the complete covariance ma-
trix of the estimated parameters for this case. The parameters include the magnitudes
and angles of the poles, and the magnitudes and angles of the amplitude coefficients.

Using these expressions, several general properties of the parameter covariance
matrix are derived for the high SNR case. We show that the angle and magnitude
parameters are uncorrelated for both the poles and the amplitude coefficients. We

also show that if the relative magnitude of the pole or amplitude coefficient estimate

is considered (i.e. g, where o is the true magnitude), then the corresponding angle

and relative magnitude variances are equal.

This paper also examines pole estimation accuracy as functions of pole magnitude,
data length, and pole separation using the variance expressions. We compare these
variance results to the corresponding Cramér-Rao bounds and verify the theoretical
results using Monte-Carlo simulations. The effects on poles inside and outside the
unit circle using backward or forward linear prediction in the TLS-Prony estimation
scheme are also detailed.

An outline of this paper is as follows. Section II presents the data model. Sec-
tion IIl presents the statistics of the model parameters and their properties. Sec-
tion IV presents some examples using the statistical expressions. Finally, Section V

coucludes the paper.




II. Estimation Procedure Review

A. Data Model
Assume we have N “snapshots” of data vectors y(t), each of length m:
T
y(t) = [yo(t) yi(t) - ym_l(t)] t=12,...,N. (1)

Each data vector is modeled as a noisy exponential sequence

ya(t) = 2 aip! +e(t) ¢=0,1,...,m~1 2)

There are n distinct exponential modes in the data; the n poles {p;}*, do not vary
from snapshot to snapshot, but the amplitudes z;(t) may vary. Here, it is assumed
that {e,(t)} are uncorrelated zero mean complex white Gaussian noise sequences with

variance o. Equation (2) may be compactly written as
y(t) = Az(1) + €(2), 3)

T T
where e(l) = | ¢y(t) e (t) --- e,,t_l(t)] cz(l) = [a.-,(t) xo(t) --- xn(t)} s

and A is the 1 x 1 Vandermonde matrix derived from n signal poles

! ] ]
P1 D2 Dn

A=| p!  pl p? (4)
B A



B. Parameter Estimation

The multi-snapshot backward linear prediction equations are given by:

1
v« v]] [=0 (5
b
where
T
b=t b o ] (6)
and where
vo(1) n(1) wld) - w()
yi(1) y2(1) ys(1) o yL4i(l)
Yn—L+1)(1)  Ym-2(1)  Um-z-)(1) - Ym-1(1)
Yo(2) v1(2) y2(2) e y(2)
yi(2) y2(2) ys(2) o yr41(2)
o] ' ' ' 7
ym—(L-H)(z) ym—-L(Q) ym—(L—l)(2) ym-—l(2)
Yo(N) yi(N) y2(N) o yr(N)
yi(N) - y2(N) y3(N) “ yL+1(N)
] ym-(L+1)(N) ym—L(N) ym-—(L—l)(]V) ym-wl(N) i

Here L is the order of prediction and b is the coefficient vector of the polynomial B(z)

given by

B(z)=1+4bz" 4+ by22+ -+ b.2%. (8)

For the noiseless case, L can be any integer greater than or equal to the model order n;

however, in the presence of noise choosing L > n results in more accurate parameter
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estimates (see Section 11). Note that all of the N snapshots are used simultaneously
tu estimate a single set of prediction coefficients (and therefore, a single set of poles).

The TLS-Prony method considers the effect of noise perturbation of both Y and
y, and the TLS éolution attempts to minimize the effect of these perturbations on
the prediction coefficient vector b (see [9, 10] for details). This is accomplished by
- obtaining an SVD of the matrix [ y : Y ] and truncating all but the first n sin-
gular values to arrive at an estimate [g % ] (9, 10]. lnserting[ g :Y ] in

Equation (5) gives the modified liueai‘ prediction equation
Yo=—3 (9)
from which the linear prediction coefficient vector estimate b is found as
b= -Y*g, | (10)

where 1 denotes the Moore-Penrose pseudoinverse. A numerically robust solution for
b can be found directly from the SVD of [ § : widehaty ], as is shown in [10].

Finally, the estimates for the poles are found by
b =zer0; (B(z)), j=12...,L. (11)

Once the L poles are determined from Equation (11), one must separate the n
“true” poles from the remaining L — n “extraneous” or “noise” poles. A popular
approach is to choose n poles based on their location with respect to the unit circle.
For example, one can choose the n poles closest to the unit circle if it is known
that the poles are undamped [29] or the n poles with smallest moduli if it is known

that the poles are damped [4]. However, these methods do not apply when the true
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poles may lie both inside and outside the unit circle. In this case we can classify
poles as true or extraneous based on the energy of the corresponding mode. We
have found this method to be more reliable than other procedures for the case when
the true modes lie both inside and outside the unit circle. This arises, for example,
in the radar scattering problem where measurements are made over a small relative
bandwidth, and the exponential modes in the data can be decaying or growing over
that band [30, 31].

ln this energy criterion method, the L sets of amplitude coefficients can be found
using the pole estimates, and Equation (3) leads to the following least squares equa-

tion for the amplitude coefhicients,

r -

1 1 1 - -
~ _ ~ (1) Z(2) - Z(N)
P P PL - ~ . -
o ~ o J..g(l) 1‘2(2) v a:z(N)
P P PL : : : = y(1) ¥(2) - y(N) ]
| 1—1 sm—1 iL(l) lL(z) iL(A/) =
= 1 p" pL -
(12)
or
ALX, ~Y,. (13)
A least squares solution to Equation (13) can be computed as
= N IS
X, = (A7AL) ALY, = AtY., (14)

where ™ denotes complex conjugate transpose. (However, in practice, more numeri-
cally robust procedures, such as a QR decomposition, should be used to solve Equa-

tion (13).) Because only n singular values of [ g .Y ] are nonzero, there are at




most n pole estimates which can correspond to data modes. Therefore, only the n
poles which have the largest energy are retained. This is done by computing the L

mode energies as

N m—1
E=S 10X 5 i=12..,L (15)

t=1 g=0
and retaining those n poles whose corresponding energies are highest. We then rees-
timate the amplitude coefficients of these n poles. This is done uéing Equation (14),
except that Ay is replaced by A, where A is the Vandermonde matrix composed only
of the n columns of A; corresponding to the n selected poles. We note that the above

procedure produces consistent estimates as ¢ — 0, as is shown in the Appendix.

III. Statistical Analysis

In this section we present a first order statistics of the complete set of parame-
ter estimates obtained in the TLS-Prony method. Assume the data is given as in
Equation (2). Let w, and o, be the angle and magnitude, respectively, of each pole
p.. thus g, — a0 Similarly let 4(¢) and J(t) be the angle and magnitude vectors,

respectively, of each vector of amplitude coefficients x(t),
T
(1) = [71(1) Y(t) - 'Tn(t)}
T
80 = [ a0 a0 - am ] (16

where

T
z(t) = [/jl(t)@fh(‘) Ba(t)er=8) ... ﬁ”(t)e”"(”] . (17)
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Define following parameter vectors:

- T
0. = [470) FTQ) @) B@) - ATN) BTN |
T
by = [y wy o w0y G e
6 = |or o7 " (18)

The following theorem gives the first order approximation of the probability density
function (pdf) of 6.
Theorem 1: Let § denote the TLS-Prony estimate of 6 which is given by the n

highest energy mode estimates found in Equations (11) and (14). Then to a first order

approximation (as o — 0), the pdf of 8 is given by the unbiased Normal distribution
0~ N(0,%), (19)
where
[ To.n U(1.1)T5= (1) T(1.N) U(1.N)T5~(N) » V(1) V(1)Ta"!
~T7N UML) T T T ) - =T ()DL N) T/ (MUO,N T (N) =T7 )V() T () V(1) Ta™
_ ~ — -~ — ~ bl
C(N,1) UGN DT~ 1) - U(N,N) U(N,N)T5~(N) V(N) V(N)To~?
-1;'(;\')5(/\',1) TSHN)ON )T~ ) - —’I";l(N)U(N,.’\’) T (N)U(N,N)T5™} (N) —TEI(A’)V(A’) T, (N)V(N)To™?
VE() VETsN 1) e VF(N) V*(N)T5~1(N) Z ZT,™?
-TS'WV (1) TSV )T~ (1) - =TSN TS VA (N)T~ (V) -T5'Z" TS1Z2T, !
(20)
where = and ~ in Equation (20) are real and imaginary part operators, respectively,
and where U(t,7), V(t), and Z are n x n complex matrices which depend on 8, L,

aud 1. The specitic formulas for these entries can be found in the Appendix. T(t)




and T, are diagonal matrices given by

. 1 1 1
Tolt) = diag (ﬂl(t)’ AORE ﬂn(t))
Ty diag (—1—,—1— ,-—1——> . (21)

)
ap @z Qn

Proof: See the Appendix. ]
Several properties of the covariance can be derived from the structure of ¥5. Some
of these properties are presented in the following corollaries.

Corollary 1: From ¥4 in Equation (20), Cov (’?,(t),ﬁz(t)) = 0, and Cov (&;,&;) =

Proof: Consider the blocks of ¥y containing the covariances of interest, which are
given by U(t,t)T5~'(t) and ZT,™'. From Equation (66) in the Appendix, it can be
seen that U(t,t) and Z are Hermitian. If follows that the diagonal elements of U(t,t)
and Z are zero. Since 1}(1) and 7, are real, diagonal matrices, the diagonal elements
of U(t,t)Tp_’(t) and ZT, " are also zero, which gives the desired result. O

Note that when t # r, U(t,r) is not Hermitian, so the diagonal elements of U(t,r)
are not zero. Thus it is not in general the case that the magnitude of z;(t) and the
angle of z;(t) are uncorrelated for ¢ # ;.

Note that from Equation (20) the angle variances are equal to the magnitude
variances except for the transformation matrices Tg(t) and T,. These transformation
matrices can be eliminated by rescaling some of the parameters in 6. The required
rescaling is obtained by using the relative magnitudes of the poles and amplitude
coefficients as the estimated parameters instead of their absolute magnitudes. That

is, define the estimate 0; to be as in Equation (18), but with &; and Bi(t) replaced by
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the relative magnitudes Z:l and —gl% We then note that the Jacobian transformation

from 6 to 6, is given by
J =diag (1, T5(1), 1., Tp(2), ..., I, Tp(N), In,Ty) . (22)

Corollary 2: ¥y = cov (51) is given by Equation (20) with all T(t) and T,
matrices replaced by identity matrices. It follows that the covariances of parameter
angles are equal to the covariances of the corresponding relative magnitudes.

Proof: Immediate from the fact that £, = J¥gJ with J defined in Equation (22).

We can also consider a reparameterization of  in which real and imaginary parts
of the amplitude coeflicients and poles are considered as parameters. Let us denote
such a reparameterization as #,, with corresponding covariance matrixy which would
give Xy,

Corollary 3: Let v denote a complex parameter, which is either a pole p; or an
amplitude coefficient z;(t). Then var(Re{r}) = var(Im{v}) and Re{v} is uncorrelated
with Im{v}.

Proof: The result can be obtained by applying the Jacobian variable transforma-
tion from polar to rectangular coordinates to ¥y. This transformation is straightfor-
ward, but tedious, and not presented here. O

Corollary 4: Yy is independent of the absolute phase references of the ampli-
tude coefficients within each snapshot, ¢(t), and independent of the absolute phase
reference of the poles, ¢.

Proof: The result follows by examining the expressions for T(t) and T, in Equa-

tion (21), U(t,r), V(t), and Z in the Appendix, and noting that they remain un-
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changed if T,(t) is replaced by e/*®T,(t) and p; is replaced by e**p;. O

IV. Examples

In this section we present a set of examples which illustrate the performance of the
TLS-Prony method. We first compare the first order statistics presented above to the
CRB for a number of cases. The CRB for this data model is presented in [32]. We then

compare the first order statistics to those obtained using Monte-Carlo simulation.

A, Erample 1: Single Exponential Mode

In this example we consider a single pole model with one snapshot of data (and
thus one amplitude coefficient). The experiment entails moving the pole along the
positive real axis from 0.1 to 10, i.e. 0.1 < p < 10 (the results are independent of the
pole angle by Corollary 4, so an angle of zero is chosen). For each pole IocationA , we
calculate the parameter variances using Equation (20) for data sets of lengths 2, 5,
10, 20, 50, and 100. For comparative purposes, the amplitude coefficient associated
with the pole is chosen to be a positive real number such that the mode energy
(z2 75! p?') is unity for each pole location and data length. The noise power is also
kept constant at ¢ = 1. The model order L is chosen to be one third of the data
fength . which has been shown to be near optimal for a number of cases (see [18, 33],

and A.3 below).
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1. Pole Variances

The first order theoretical variances for the estimated pole angle and pole magni-
tude appear as the dashed lines in Figures 1 and 2, respectively; the corresponding
CRBs appear as the solid lines in these figures. From Figure 1 we see that the pole
angle variances are close to the CRBs when the pole is inside the unit circle. When
the pole is outside the unit circle, the variances become much higher than the CRBs
(except for the m = 2 case). For larger data lengths the disparity with the CRB is
much more pronounced. This is because backward linear prediction is used in our
TLS-Prony estimation method. With backward linear prediction, extraneous poles
lie outside the unit circle, thus making estimation of boles outside the unit circle more
difficult [34]. The use of forward linear prediction would give corresponding results
for poles inside the unit circle. Similar observations apply to the pole magnitude
variances (see Figure 2). The pole magnitude variances can be normalized to give
relative error of the pole magnitude, i.e. var(%). If this is done, one obtains exactly
the same curves as in Figure 1 (¢f. Corollary 2).

From these two figures we also see that inside the unit circle the variances for pole
angle are higher than the variances for pole magnitude and vice-versa outside the
unit circle. This is because the angular uncertainty becomes greater as a pole moves
closer to the origin. As expected, the polé angle variance approaches infinity as the
pole approaches the origin.

From Figures 1 and 2 we see that the pole angle and magnitude variances are
asymptotically (as m — oo) lowest when the pole is on the unit circle, and that on

the unit circle the variances are decreasing by 1/m? (m is the data length). This is

(%]
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cousistent with the well-known 1/m? variance decrease, since the amplitude coefficient
is adjusted in this experiment to keep the mode energy constant (if the amplitude
coeflicient is left unchanged, the variance decrease is 1/m?).

When the pole is not on the unit circle, the variances do not decrease to zero
as 1 — 00. Recall that we keep the total mode energy constant. For a decaying
or growing exponential mode, adding data points while keeping the energy constant
results in adding data points with smaller and smaller amplitude. As a result, the

parameter estimate variances do not continue to decrease.

2. Amplitude Coeflicient Variances

The \’a,riaucgs for the amplitude coefficient angle and magnitude appear in Fig-
ures 3 and 4. As before, each curve is a plot of variance versus pole radius for various
data lengths m. There are several points to note in these figures. First, when the pole
is inside the unit circle, increasing the number of data points provides no significant
decrease in the variances. The first data point with no noise added is precisely the
amplitude coefficient. When the pole is inside the unit circle, this amplitude does
not change much as a function of data length, and consequently its variance does
not change much. However, when the pole is outside the unit circle, the amplitude
coeflicient decreases rapidly toward zero as data length increases. Thus, outside the
unit circle the estimate of the amplitude cannot be expected to vary much around
zero and the magnitude variances become low. Also, variance of the estimated angle

“becomes guite large because of high angular uncertainty for points near zero.
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3. Prediction Order Considerations

In the above figures we used a prediction order L equal to one-third the data
length. We next consider the effect of prediction order on the variances of the TLS-
Prony parameter estimates. We consider a single exponential mode whose pole is}on
the unit circle. We choose 0 = 1 and choose the amplitude coefficient so that the
mode energy is unity, as before.

Figures 5, 6, and 7 show the variances of the pole angle, amplitude coefficient mag-
nitude, and amplitude coefficient angle. The solid lines represent the CRBs (which
are, of course, independent of TLS prediction order), and the dotted lines represent
the TLS-Prony variances. Figure 5 has been presented in earlier works [18, 23, 25],
but the amplitude coefficient was not considered there. Since the pole is on the unit
circle, the pole magnitude results are identical to the pole angle results (¢f. Corol-
lary 2, with a3 = 1). From these figures we can see that the best prediction order

choice is approximately m/3; this agrees with the results in [18, 23, 25].

B.  Erzample 2: Two Undamped Erponential Modes

In this example we consider two poles at aye’(“0t8w/2) and qpeflwo=8w/2) with
a1 = ay = |. Variances are computed for various dé.ta. lengths (m = 5, 10, 20, 50,
and 100) and angle separations Aw. The variance results are independent of wy so
wo = 0 is used. Again, L = m/3, o = 1, one snapshot of data is used (N = 1), and
each amplitude is chosen such that the corresponding mode energy is unity.

Figure 8 shows the variances for the pole angle estimate (of either pole) as a

function of pole separation and data length. The solid lines again show corresponding
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CRB results. The variances for the pole magnitudes are equal to the pole angle
variances because these poles are located on the unit circle. We see that the TLS-
Prony algorithm performs well with respect to the CRB. In fact, for the curves shown,
the TLS-Prony variance curves are always within 2dB of the corresponding CRB

curves.

C. FEzample 3: Monte-Carlo Simulation of Ten Mode Case

In this example, we have chosen ten exponential modes to represent a general
case. The true pole location of each mode is denoted with an “x” in Figure 9(a).
For this case we have m = 100 data points, L = 33, and o = 0.001. The amplitude
coeflicients are chosen so that each mode energy is unity; this corresponds to an SNR
of 10dB per mode; the total SNR (signal power/noise power) is 20dB. The modes
were chosen as a representative sampling of various situations.

Figure 9 presents a comparison between the TLS-Prony estimate theoretical vari-
ances and variance estimates obtained using Monte-Carlo simulations. The theoreti-
cal variances are shown as two-standard deviation concentration ellipses around each
pole. These ellipses (they are actually circles, by Corollary 3) give 87% confidence
intervals in the complex plane for pole pole estimates. The dots in Figure 9 are pole
estimates corresponding to the ten highest energy poles from each of 100 Monte-Carlo
simulations. The details of the pole estimation accuracy are summarized in Table 1.
Note that the Monte-Carlo variances are close to those predicted by theory for most of
the poles, in particular for those closer to the unit circle. For poles well inside the unit
circle, there is some bias present which is not predicted by a first order approxima-

tion; in addition, the predicted variance is smaller than the actual variance. As poles
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Table 1: Theoretical and simulation variances for the poles of a general ten mode

case.

Pole | Theoretical variance | Simulation variance | Pole
number (dB) (dB) radius
1 -24.2 -22.4 1.115
2 -42.7 -43.4 1.05
3 -35.7 -35.2 0.8
4 -25.8 -22.4 1.12
5 -57.1 -56.9 1.0
6 -57.0 -56.1 1.0
7 -25.8 -21.5 0.6
e -29.4 -29.1 1.115
9 -39.1 -32.2 0.9
10 -30.1 -26.7 0.7
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move outside the unit circle to the radius of the extraneous poles, some deterioration
occurs in terms of misidentifying pole estimates as “true” or “extraneous”. Note the
rapid increase in variance of a pole estimate as its radius increases, by comparing the

variance for pole 2, 8, 4, and 1.

V. Conclusions

We have presented a statistical analysis for estimated poles of the TLS-Prony
algorithm. This analysis includes complete expressions for the covariance matrix of
the parameters of an exponential model which contains one set of poles and multiple
sets of amplitude coefficients. The poles of this model fnay lie anywhere in the complex
plane. Using these expressions, several usetul properties of the covariance matrix were
established. These include independence of the two parameters for each amplitude
coefficient and pole, whether one considers a polar, a relative magnitude polar, or a
rectangular real and imaginary part parameterization. It was also established that
the variances of these pairs are equal for the relative magnitude polar and rectangular
real and imaginary part parametérizations.

The results of this paper provide a sound basis for performance analyses of the
TLS-Prony estimation method. We have extended previous works to include the
general .damped undamped case, as well as to include amplitude coefficient parameters
in addition to pole parameters. The results can be used to analyze various situations
and evaluate the potential success of applying the TLS-Prony estimation algorithm,

as the corollaries and examples in the paper demonstrate.




Appendix: Proof of Theorem 1

From Equation (10) we note that

b2b—b = —V*tj+S*s
= —V*(s+35)+5*s

= —(Vr-5t)s-V*3 (23)

where

[ﬁ:y']=[5:5']+[§:§]- (24)
Here, [ s : S } is the noise free version of [ TR Y ], and b is the Lth order lineér
prediction coefficient vector associated with the poles of the noiseless model. Note

that b gives the n true poles and L —n extraneous poles (cf. [34]). In order to evaluate

the expression in Equation (23) we use the following identity for any matrix M [35]
M* - M* = —M*MM* + (M M) M Py + PS. M (MM, (25)

where M = M — M, P& = I, — MM*, Pe =1~ M=M=+, and I, is the g x g
identity matrix. Using the fact that Pgs = 0 and a first order approximation, we

then obtain

b = -Y*Sb— P45 5F5ts — P45

&

—St8b— PLS* S tSts — §t5. (26)

33




The above approximation is valid since the matrices [ TR Y ] and [ s : S ] have

the same ran. Let
[y:Y]=[s:S]+[w:W]> (27)

where [ w - W ] is defined as the noise-only part of [ y : Y ] (see Equations (2)
and (7)). By using the perturbation analysis in {36] on the matrices [ s + S ],

[ y Y ], and [ g % ], it can be shown that to a first order approximation
s[5 5]=s]w . w] (28)

The above equation also implies that §*$** = W=§**. Thus, Equation (26) can be

written (to a first order approximation) as
b= —St*Wb— PEW*S*tS*ts — Stuw. (29)

From Equation (29), we note that b — 0 as ¢ — 0 since the elements of W and w are
uncorrelated. zero mean, complex white Gaussian random variables. Therefore, the
resulting L pole estimates are consistent as o — 0. Similarly it can be shown that
the L sets of the amplitude coefficients are also consistent as ¢ — 0. Note that the
“true” aﬁlplitude coefficients of the extraneous modes are zero; thus it follows that
choosing the n highest energy poles as the true poles is consistent as o — 0.

Note that SPE = 0. Multiplying both sides of Equation (29) through by S, we
obtain

Sb=-5S5%¢, (30)

where e = w + Wh.
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or

From Equation (2), we can write S as

z1(l)

1 (Dmy

2 (1)py D

z2(1)

z2(1)p2

z(1)py Y

zn(1)

zn(1)pn

z"(l)p:‘"-(lffl)

1:1(2)

z(2);m

-(L
zi (Qpy Y

1?2(2)

z2(2)p2

za(2)py D)

z,(2)

zn(2)pn

2, (2)pnEHY

zi1(N)

z1(N)p,

—(L
zy(N)pp )

where G is given by

Equation (30) thus becomes

HGb = —HGS*e.

12(1\')

z2(N)p2

zo(N)py =D

S=HG,

P P

Pn pn

zn(N)

:cﬂ(N)pn

zo(N)pa~ D)

(34)

Now note from Equation (8) that the true and estimated Lth order characteristic

polynomials are B(z) = 14+by 2 +b322+- - -+by 2L and B(z) = 1+3121+?)2z2+- . -+5Lzl‘,
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respectively. Note that B (p;) = 0 and B (5:) = 0.
We can use a first order Taylor expansion to find an expression for the error in

the estimated pole locations. We follow the technique in [17]. For each p; we obtain

0 = B(p)

= B(p)+ -(%E(Z)Inp, (pi — p:) + (higher order terms)
~ 3

= B(p)- B(p)+ gé(z)lum (7: — pi) + (higher order terms)
~ L b+ bap? -+ bk — (1 bupi + bap? + -+ + bupF)
+ (i)l + 2bopi + - + LBLP{J—]) (pi — pi)
- b — by _ |
by — by 2p;
~ [pi p? pz] +[b1 by - by |G- p)
b — by Lpi™
- [Pi P pZL](Z—b)+ni(ﬁi—pi). 4 (35)

Thus, to a first-order approximation

. 1 7
(pi——pz-)=—;[pz- o b ]b (36)
where 7, is given by }
1
2])1‘ -
7,l=[1,1 by - bL] . . (37)
Lyt
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In matrix form we thus obtain

PL£P_P=-FGh, (38)
where
N T
P = [1’31 ]’52 ﬁn]
T
P _— [pl p2 P pn]
1 1 1
F = diag{—,—,...,—]. 39
g(nl 772 nn) ( )

Since the n poles are distinct, H is of full column rank. Hence, we can multiply
Equation (34) by (H"H)™' H* to get
Gb = -GS, (40)
and by substituting Equation (40) into Equation (38) we obtain |

P = FGS*e. (41)

We now note that to a first order approximation, P is given by

= (a+a)0e” O(1+5&+ (hot))—a@ev

&

(a+a)De+ate™ Qi —a@e™

= T (TG + 50), (42)
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where © denotes the Hadamard product, and

, T
er = [ erl e]w2 v .. ejw" }
T
w = [51 Wy ‘:Jn]
T
a = [al &, an}
1 1 1
T, = diag (—,—,...,—) (43)
B D1 p2 Dn

and where &; = &; — w; and & = &; — o;. From Equations (41) and (42) we obtain:

& = Im{T,FGS*e}

& = Re{T;'T,FGS*¢}. (44)

Recall that the elements of W and w are uncorrelated, zero mean, complex white
Gaussian random variables. Thus, € is multivariate Gaussian with zero mean and

covariance matrix

swt=e[l Wl (e wIE)]-omr

D is defined as a (m —~ L) N x mN block diagonal matrix given by

D = diag(B, B, ..., B), (46)
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where B is given by

(b b b0 0 e 0]
0 1 b by b 0 e 0
. (47)
0 -~ 0 1 b - by by O
[0 00 b by b

We also have

sl =e (e w]B) (v wIE)]-0

Using these results, along with the following relationships (proven in [16])

Re{u}Re{vT} = % [RC{UUT} + Re{uv'}]
Im{u}Im{vT} = —% [Re{uvT} — Re{uv*}]

. 1
Re{u}Im{v'} = 3 [Im{uvT} - Im{uv*}] , (49)
we obtain the following covariances for the pole parameters:

E[55"] = ZRe{T,FGS*DD"S*G F'T;}
E &5T] = g—lm {TPFG~9+DD*S*+G*F‘T;T;‘1}

g

Elad"] = SRe{I'FGS*DD S™GFTIT . (50)

To obtain the covariances for the amplitude coefficient parameters we use Equa-
tiou (14), which provides the amplitude coefficient estimates for each snapshot in

terms of the estimated poles. We now note the following

>

——
7

YE2EX-X = Aty,— A*S,
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At (S, + N,) — AtS,

= (A* - A*) S, + ATN,, (51)

where
X = [ z(1) z(2) --- z(N) ], (52)
and where S, is the noise free version of ¥, and N, = [ e(1) e(2) --- e(N) ] is

the corresponding noise.

We apply the identity in Equation (25) to the first term of Equation (51). Since
the n poles are distinct, A and A are full rank. Also, since m > n and S, € Range(A),
we have

(AT — A1)S, = —ATAA*S,. (53)

From Equations (51) and (53) we obtain the following first order approximation

X = —AYAA*S, 4+ ATN,
= —ATAX 4+ ATN,

~A*AX + A*N,. (54)

X

Note that X is a matrix in which each column is composed of the amplitude coefficient

variations for each snapshot:
Y:[E’-(l) F2) - 5(‘/\/)]. (55)

Following the same procedure as in Equation (42), a first order approximation of Z(t)
is given by
(1) m T2 ) (To)B(E) + 53(1)) (56)
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where

(57)

and where %(t) = %i(t) — %(t) and Bi(t) = Bi(t) — Bi(t). From Equations (54), (55),

and (56) we obtain

() = hn{]}U)A+(—n§xU)+-dtD}

B(t)

Re {T;5'(1)To(t)A* (- Az(t) + et)) }-

(38)

Before computing covariances for the parameters in Equation (58), we need to

perform some manipulations to Ax(t}, since the random variable A does not appear

at the rightmost position. We proceed with a first order approximation as follows

2

0 0 0
p—m P2 = p2 Pn = pn
P - n P — 1 po-rm ()
ﬁ;n—l _ pv]n—] ]'51211—] . P;n—l ﬁ-zz—l _pzl—l ]
0 0 0
) P2 Pn
2p1py 2p2p, crr 2pnPr
(m=1)p7"*p (m~1)p3~*p, (m —1)p=*pn

4]




= CATpdlag (ﬁl,ﬁ% s 7ﬁ7l) .’I}(t)

CAT-(t)T,P

= CAT;'(\)T,FGSte, | : (59)
where C is a diagonal matrix given by
C = diag(0,1,...,m —1). (60)
Equation (58) can now be approximated by

(1) ~ Im{T(1)AT (-C'Afz;*l(t)Tch;s’fHe(t))}

B(t) ~ Re{T;'()T.(t)A* (~CAT*(t)T,FGS*e + e(t))}, (61)
Since
Bl =E[([w w][,]) e ] =0 (62)

where D(t) are each given by the tth column block of D (cf. see Equation (46)), we

also have

E[et)e’(t)] = 0. (63)
Using these results and Equations (49) and (61) we obtain the following covari-
ances for the amplitude coefficient parameters
E[fy(t):,f(r)] - %Re{’l;,(t)A’L (CAT;\O)T,FGS*DD* S+ G F*T; ;7 (r) AC”
—CAT, T ({)FGS*D(r) — D*(t)S“G*F'T;T;"](T)A'C"

+17716t,7‘) A+*T;(T)}




E[F@)F"(r)] = %Ixn{TI(t)A+ (CAT()T,FGS* DD $**G*F*T;T; ™ (r) A*C™
—CAT; (Y)T,FGS*D(r) — D" ()SY"'G*F*T; T, (r)A*C"
+lnbi,) AT ()T (r) }

E[B1)E"(r)] = %Re{Tﬁ“l(t)TI(t)A* (CAT\)T,FGS*DD*$*"G* F*T;T; ™ (r)A*C"
~CAT; (t)T,FGS*D(r) — D*(t)S* G F*T;T; 7 (r)A"C"

+Inbiy) AYTI ()T (r) (64)

Using Equations (44). (49), and (61) we can also compute the cross-covariances

between the poles and the amplitude coefficients as follows

E[)aT] = %Re{Tz(t)AJr (-CAT ()T, FGS* DD" + D*(t)) ST G Ty

E[5()a"] = i;-lm{n(t)A+ (-CATSN)T,FGS*DD™ + D*(t)) §*°G* F*T; T; "
E[g1)aT] = —%Im {17 ()T () A* (-CAT ()T, FGS* DD™ + D' (1)) SHG T}
El3na’] = gl'_{c’{'l";'u)’j;(t)/ﬁ (-CATS O, FGSTDD™ + D*(1)) ST G FT;T1}

(65)

Equations (50), (64), and (65) completely specify £, as given in Equation (20)

using the following substitutions

Ut,r) = RU)ZR(r) - RUQ(r) — Q ()R (r) + %Tx(t)A“‘A“Tg(r)&t,,
V(t) = —-R()Z+Q ()
Z = ST,FGSTDD S™*G FT;
g

Qt) = FT,FGS*D(ATT:(1)

R(t) = T.()ATCATI'(1). (66)
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Furthermore, since ¢ and e(t) are zero mean, Equations (44) and (61) imply that

the parameter estimates are unbiased, i.e. to a first order approximation £ [5] = 0.

This completes the proof. O
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I. Introduction

A popular high resolution estimation technique is the use of backward linear pre-
diction coupled with singular value decomposition (SVD) and total least squares [1],
here called the TLS-Prony technique. This technique has been shown to provide
good parameter estimates of damped exponential signals in noise for various types
of data [1, 2]. However, for large data lengths, the TLS-Prony method can be com-
putationally expensive. The reason for this is that the TLS-Prony method involves
computing the Singular Value Decomposition (SVD) of a data matrix of size (m,n)
where m is related to data length and n to prediction order. For best accuracy of the
parameter estimates, n = %. Thus, this data matrix becomes quite large for largé
data lengths. To overcome this problem it is sometimes possiblé to decimate the data
before applying the TLS-Prony technique; the result is often a large reduction in
computations. In this paper we consider the statistical and computational properties
of the TLS-Prony algorithm when used in conjunction with data decimation.

Data decimation has been considered before [3, 4] in the context of spectral esti-
mation. This technique entails using only part of the measured data. Decimation of
correlation sequences was also considered in [5]; this technique effectively uses all the
measured data, but is somewhat restrictive in that it applies only to correlation-based
parameter estimation techniques. These works do not present a quantitative analysis
of statistical properties of the resulting parameter estimates.

In this paper we develop a data decimation technique which is based on the TLS-
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Prony algorithm [1]. We also present a theoretical statistical analysis of the accuracy
of the TLS-Prony parameter estimates when decimation and any linear FIR filter
are used. Based on this analysis, we present a quantitative comparison of estimation
accuracy for various types of data decimation schemes. In particular, we compare
the decimated and nondecimated procedures in terms of estimation accuracy. Qur
analysis demonstrates that t.he performance of the decimated TLS-Prony procedure
is comparable to the performance of the nondecimated TLS-Prony procedure for un-
damped exponential modes. We also develop a complexity analysis and show that the
decimated algorithm is computationally more efficient than the nondecimated algo-
rithm. Both the statistical performance and the decrease in computational complexity
are verified by Monte-Carlo simulations.

We then apply the statistical analysis to consider two specific cases of interest.
First, the signals of interest may be bandlimited and occupy a relatively small region
of the unambiguous frequency range f € [—%, %] In this case one is interested in
analyzing a subspt of the whole frequency range. For example, this technique was used
to investigate radar signatures of aircraft [2, 6]v. One question is whether decimation
can improve the accuracy of the pole estimates in this case.

A second case of interest is Wllen the signal occupies most or all of the unambiguous
frequency range. In this case we filter the data to isolate a number of subbands, then
use a decimation version of TLS-Prony to estimate the poles in each of the subbands.
This idea is similar in principle to beamspace prefiltering in array processing [7, 8, 9].

By focusing on particular bands one at a time, estimation techniques can be used
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with lower model orders since there are typically fewer modes within each of the
bands. Thus, a single wideband estimation procedure is replaced by several lower
order estimations. This has the advantages of being much less numerically intensive
and of being amenable to parallel implementation [9].

An outline of this paper is as follows. In Section II we develop the modified
TLS-Prony procedure. In Section III we derive the first order approximation of the
statistics of the estimated parameters. In Section IV we develop a procedure and a
complexity analysis for performing full spectrum estimation. We also discuss filter
design and performance loss in the estimation. Section V presents some simulation

studies using decimation. Finally, Section VI concludes the paper.

II. Decimation Estimation Procedure

A. Data Model

Assume we have N “snapshots” of data vectors y(t), each of length m:

T .
y(t) = [ volt) (1) -+ ym_1(2) ] t=1,2,...,N. (1)

Each data vector is modeled as a noisy exponential sequence
ba(t) = Sty +e(t) q=0,1,...,m—1. (2)
i=1

There are n exponential modes in the data; the n poles {p;}L; do not vary from

snapshot to snapshot, but the amplitudes z;(¢) may vary. Here, it is assumed that
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{eq4(t)} are uncorrelated zero mean complex white Gaussian noise sequences with

variance 0. Equation (2) may be compactly written as
y(t) = Az() + €(1), (3)

where e(t) = [ eo(t) 61(t) o eme(l) ]T, z(t) = [xo(t) z1(t) - zpoa(t) ]T,

and A is the m x n Vandermonde matrix derived from n signal poles

11 1
4! P2 Pn
A=1 p A P ()
oy PRt

B.  Parameter Estimation

Consider the m x 1 data vector {y(¢)} as given by Equation (1). In general we
first filter the data set {y(t)} before decimating, to minimize effects of aliasing (we
discuss filtering in detail in Section IV). Here, we consider an ‘lth order FIR filter of
the form

y'(t) = Ky(t), - (5)
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where X .
ki k- kg -+ k 0 0 --- 0
0 k ky -+ ki ko 0O -~ 0
K= ’ (6)
0 .- 0 k k-1 -+ kg ko O
0o --- 0 0 k - ks ki ko
L 4 (m-Dxm

and where the sequence {kc}lc=0 is the FIR filter impulse response.

From y,(t) we now define a set of decimated sequences as

Yo' (1) = Yoarult) ¢g=0,1,...,m,—1 u=0,1,...,d -1, (7)

®, "

where m), = [m—;—lj The index “u” gives the start sample in the decimation; thus,
the sequences {y;"(t)} (for fixed t) represent a set of interleaved sequences decimated
from {y’(t)}. From Equations (2) and (7), we see that each sequence {y;“(t)} is a

noisy exponential sequence of the form

(D) = o) ()" + (), ®)
where
po= (p)

(1) = wp K, (9)
and where K(z) is the FIR filter polynoinial given by
K(z)=ko+ kiz7  + kpz72 4 - 4 K27l (10)
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Note that the effects of the FIR filtering in the new model are to scale the ampli-
tude coefficients and to color the noise. In general, we will choose K to be a bandpass
filter. By careful cho.ice of the FIR filter, we can sighiﬁcantly reduce the mode am-
plitude coeflicients outside of some band of interest; in this case we can assume the
number of the “significant” modes in the filtered data is n’ which is less than n. In

this case, we have the following model:

TL’

Yo (t) = D z(t) (p1)T + ep(t), (11)

i=1

where
n

)= Y a(t) () + (). (12)

i=n'+1

Note that eg*(¢) is colored Gaussian noise with nonzero mean; the effect of the nonzero
mean is to introduce some bias in the parameter estimates, as we will see in the
following sections.

Thus we now have N x d sequences with common poles but different amplitude
coefficients. This case is similar to the original multi-snapshot noﬁdecimated model
in Equation (2). As a result, the TLS-Prony algorithm can be applied to the data
in Equation (7) to give estimates {];Z} and {x?"(t)} We thus have decimated multi-

snapshot backward linear prediction equations given by:

yIO YIO
yll Yll 1
[b’] ~ 0, (13)
y/d—l y/d-—l
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or

where
T
/
b=[m b, %}, (15)
- and each

v (1) y:;+d(1) ' y:;+2d(1) T 3/:‘+Ld(1)
Yusal(l) Yus2a(l) 3/:‘+3d(1) T y:4+(L+1)d(1)
Yusm: —Ls1)all) y:‘+mji—Ld(l) ' yL+m;-(L-1)d(1) o y;+m;—'d(l)

Yu(2) yL+d(2) yL+2d(2) T y:4+Ld(2)
yL+d(2) y:;+2d(2) y:.4+3d(2) e y:;+(L+1),1(2)

[ Yooy ] = : : : .

yL+m;-.(L+1)d(2) yf‘+m;—1,d(2) y;+m;-(L—1)d(2) T y:;+m;—d(2)

Y. (N) y:;+d(N) y:‘+2d(N) S yL+Ld(N)
y&+d(N) y:‘+2d(N) y:4+3d(N) T y;+(L+1)d(N)

| y:‘+m;_(L+1)d(N) yql;+m;—Ld(N) y;+m;—(L—1)d(N) e y:;+m;-d(N) i

(16)
Here L is the order of prediction, and & is the coeflicient vector of the polynomial
B'(z) given by

Bl(z) =142+ b2+ + b 2" (17)

The choice of L affects the accuracy of the b coeflicients, as we address in later
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sections.

The TLS-Prony method considers the effect of noise perturbation of both Y’ and
y', and the TLS solution attempts to minimize the effect of these perturbations on the
prediction coefficient vector &' (see [1] for details). This is accomplished by obtaining
an SVD of the matrix [ y Y } and truncating all but the first n’ singular values
to arrive at an estimate [ gy Y ][1] Inserting[ g ¥ ] in Equation (14) gives
the modified linear prediction equation

~

Y'i =~ -y’ (18)

from which the linear prediction coefficient vector estimate ¥ is found as

~ P

¥=-v"y, (19)

where * denotes the Moore-Penrose pseudoinverse. Finally, the estimates for the

decimated poles are found by

—_—

P =zero; (B'(2)), j=1,2,...,L. (20)

It is not in general possible to recover p; from ;7?, as the mapping p; — p? is not
one-to-one. However, the mapping can be made one-to-one by suitably restricting
the domain of p,. For example, if it is known a priori that /p; € (-——Z-, %) then p;

may be uniquely recovered from ]/)Z by

5= ()" (21)




In order to meet the domain restriction requirement without e prior: information,
one can choose a suitable FIR filter K, as discussed in Section IV below.

Once the poles are found, the corresponding amplitude coefficients can be esti-
mated from the decimated pole estimates and decimated data using Equations (11)
and (9) or from the nondecimated pole estimates and nondecimated data in precisely
the same way as in the nondecimated TLS-Prony solution [10]. Usihg the decimated
pole estimates and decimated data is more computationally efficient, since there will
be shorter data lengths and fewer pole estimates. For this case, Equation (11) leads

to the following equation for the amplitude coefficients,

AKX =Y, - (22)
~ where
P Pz -t PL
Y - ’72 /,\2 —~2
AL = m P2 SRR 3
—(my-1)  ~(my-1) —~(my~1)
| Pl 2 S ]
K, = diag (5K (), 52'K (F2) .., BL'K (L))
zi(1) .1(2) Z;(N)
T - Z2(1) 72(2) Zo(N)
(1) Z.(2) ZL(N)




o= o) @) e | (23)

The amplitude coefficients can be found from a least squares solution to Equation (22),

X =K, (4,4) " Ay, (24)
where * denotes complex coﬁjugate transpose. We noté that Equation (24) is not
used in practice to solve Equation (23), as more numerically sound procedurés (such
as QR decomposition [11]) can be used.

Because only n’ singular values of Y are nonzero, there are at most n' pole esti-
mates which can correspond to true data modes. Therefore, only the n’ poles which
have the largest energy are retained [10]. We then re-estimate the amplitude coef-
ficients of these n' poles by eliminating all but the n’ “high energy pole” columns
of :4\’1,, then recomputing the least squares solution for X. We note that the second
amplitude coeflicient estimation can be done by using the QR decomposition from the
first amplitude coefficient estimation. By doing so we save computation in the second
amplitude coefficient estimation. We also note that the nbise e;'(t) in Equation (11)
is not in general white so an (unweighted) least solution to Equation (22) may not
lead to amplitude estimates with smallest variance.

The above procedure can be modified further to provide even greafer computa-
tional savings. The extra interleaving decimated data sets can be discarded for the
computation of the poles, i.c., u in Equation (7) can take on only the value 0. From
a Nyquist theory point of view, we note that discarding the interleaving data should

provide no loss in performance if an ideal lowpass filter can be implemented (this is
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confirmed in the examples presented in Section V below). Note that this data dis-
carding can be easily incorporated into the matrix K by keeping only every dth row
and that the statistical analysis below is presented in a general K framework, so that

the analysis applies equally well to the cases where data is and is not discarded.

III. Statistical Analysis

A major contribution of this paper is the derivation of the statistical proper-
ties of the TLS-Prony pole estimates obtained using decimation. Below we derive
a general expression for the ﬁrsﬁ order approximation of the probability distribution
function (pdf) of the estimates of {p;} under the assumptions that there is a filter
present as described by Equation (5). This expression applies to different decima-
tion values so it can be used to determine the relative statistical accuracy for various
choices in the TLS-Prony algorithm. The expression is given in the following theorem.

Theorem 4.1: Assumé we are given FIR filtered data {y;(¢)} as defined in Equa-
tions (7) and (11). Let

R N 1T
P=|p pb - pl - (25)
be the n’ highest energy TLS-Prony pole estimates found from Equations (20) and

(24). Then the first order approximation (as ¢ — 0) of the pdf of P is given by

P ~N(P +P.T), ' | (26)
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where the estimate bias and covariance are given by

P = FG@S*P,

Y = oF'G'S*E (F'G'S+) . (27)

Here P! is defined in Equation (68) and X, is given by

EO El .. zd—l ]
El"‘ EO
T = ‘ ‘ : (28)
21
Ed_l . o= 30

where each "= is a block diagonal matrix given by

£~ = diag (B'K*K*" B",B'K*K""B", ..., B'K*K*B") .
N(m!=L)xN(m!—-L)

(29)
The expressions for K* and B’ are given by
T
A’“=[K(u+1)’f Ku+1+dT - K(u+1+m'-d)T] , o (30)
where K(a) is the ath row of I, and
1 & b -~ b, 0 0 .- 0
0 1 b - b, b 0 - 0
B'=|: . (31)
o .- 0 1 b - b, b 0
0 - 0 0 e by, b, b

4 (ml=L)x(m?)
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We also have

F' = diag (7;%771_2%) (32)
_ 1 -
' = [ A b, ] 7 : (33)
il
R
oo | BB 23 | (39)
P P Pl
and S’ defined as the noise free version of Y’.
Proof: See Appendix. O

The above theorem gives the accuracy expressions for the case where the data are
decimated by a factor of d, and all d interleaved data sets are used in the estimation
(see Equation (13)). In some cases one may wish to use only one of the d interleaved

data sets, in which case Equation (13) is replaced by

el o

where y" and Y are defined in Equation (16). For this case, the accuracy expressions
for the resulting parameter estimates are given in the following corollary.
Corollary 4.1: Assume we are given data as in Theorem 4.1, but form TLS-Prony

estimates based on Equation (35) instead of Equation (13). Then the first order
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approximation (as o — 0) of the pdf of P is given by
P~ N(P+Py,3), (36)
where

P, = F'G'S°*PpY,

£y = oF'G'S*TSl (F'G's™)". (37)

Here P/° is the first block of P’ (the block involves K%, and Y0 F' and G’ are the
same as the ones in Theorem 4.1, and S"O is the noise free version of Y.

Proof: Follow by replacing S’ by §° and K by K° in the proof of Theorem 4.1. O

Equations (27) and (37) provide the biases and covariances for decimated pole
estimates given a particular set of poles and decimation factor. If the nondecimated
pole estimates {,z’);} are recovered from the decimated pole estimates {E} using Equa-
tion (21), the biases and variances for the nondecimated poles can be derived in terms
of the biases and variances for the decimated poles using a first order approximation

of Equation (21). Defining ;j = ;;: — pi. We have the following derivation.

~ ~\d
pi+pi = (p)

=" (pi + )"
= p¢+ dp?'p; + (higher order terms), (38)
and note that p! = p¢. Thus,
P
p1 ~ dpdi_l (39)




Therefore, we have

Bias A:
Bias(i) £ Elp]—pi= ————-—dpﬁ )
~ ~ o\~ e Var (;;;Z)
Var(p) = E[(fi~ E[p) (7 - E[B)] = AT (40)

The variances of the nondecimated poles can now be compared to their respective
CRBs (provided the estimated bias is negligible). Recently, a CRB formulation has
been developed for multi-snapshot damped exponentials in noise [12]. These CRB
results can be directly compared with the variances of the estimated poles using the
TLS-Prouy method to examine its performance in both nondecimated and decimated

circumstances. This comparison is shown in Section V for a number of examples.

IV. Full Spectrum Estimation Using Filtering and Decimation

Using the decimation scheme which has been developed, any poles or modes not
in the band of interest need to be filtered out so that they are not aliased into the
band of interest by the decimation operation. Even if there are no poles outside the
band of interest, a filter can be still applied to reduce the out-of-band noise which
will be aliased into the band of interest by the decimation operation. However, the
imperfections of a FIR filter, nonideal stopband rejection and data length reduction by
transient response effects, will cause loss in performance, as shown in Section V below.
In general, nonideal stopband rejection increases bias in the estimation (because the

leakage of the stopband poles, and thus the first term in Equation (12), will be larger),

74




and data length reduction due to transient effects of the FIR filter causes a variance
increase.

In this section, we develop a procedure to obtain full spectrum mode estimates
by use of bandwidth segmentation, and then discuss how to design the needed FIR
filters so that the performance loss is minimized. Finally, we present operation counts

for both the decimated and nondecimated estimation procedures.

A. Procedure

To examine the use of filtering and decimation, assume we are interested in es-
timating modes in the complete spectrum (that is, poles which may lie anywhere in
the complex plane), and we wish to use a decimation factor of d. We estimate poles
in each region of Figure 1(a) using a decimation based TLS-Prony procedure. First,

we modulate the data to center the band of interest about f = 0 as follows

Yg(t) = wy(t)e™?7ho0, (41)

where fo is the modulating frequency for one of the subbands of interest, fo =
0,2 ...,ia'—l_. We then lowpass filter the modulated data to isolate the frequency
band f € [»i, 2171] Finally, we apply the decimated TLS-Prony algorithm of Sec-
tion I1. The resulting pole estimates, ;’)?, as given by Equation (21) liein f € [——%, %]
as shown in Figure 1(b). The corresponding poie estimates in nondecimated frequency
space are given by Equation (21) with modulation as follows

1

pi = (7)) . / (42)
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Figure 1: Spectral effect due to decimating by six.

A problem which can result from the above procedure is that poles near the
endpoints of the subband region may be incorrectly estimated near the opposite
endpoint. This results from the discontinuity of the mapping in Equation (42) for
Z;/)’;- ~ zn. It can be seen from Figure 1(b) thé.t, small errors in estimates near

A and B result in large differences in Figure 1(a). To avoid this problem, we use
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‘c > d overlapped estimations, each of size 5 (note that this changes the modulating
frequencies to be fo = 0,2,2,...,¢=1) This is shown in Figure 1(c) for ¢ = 2d. For
each region, we retain only those pole estimates which are in the half of the overlap
region which is closer to the center of the band of interest. For example, in Figure 1(c)
for the subband [A,B] we retain poles only in the region [C,D]. This corresponds to
retaining pole estimates whose angles satisfy

Bk W

[y €
Pi ¢’ ¢

in the decimated frequency space. In this way, we reduce the effects of the disconti-

nuity of the mapping in Equation (21) for /p; near =. The overlap method also helps

to provide immunity to effects of a nonideal lowpass filter, as is discussed in the next

subsection.

B. Filter Design and Performance Loss

As we discussed before, the use of finite length FIR filters results in performance
loss. We need to design a filter such that this performance loss is minimized. Because
the stopband of the filter is set by‘ the decimation factor, d, to be [—-2171, -,}2], there
remain three free design parameters: the order of the FIR filter (I), the number of
overlapped estimations (¢), and the flatness of the passband. Note that the passband
1s defined as [—512, zlc] , the region in which we actually retain the pole estimates.

Each of the parameters has its own effect in the estimation perfofmance. Larger

filter lengths result in a variance increase because of the data length reduction associ-
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ated with discarding the transient response of the filter output. Shorter filter lengths
result in increased bias of the pole estimates due to aliasing of imperfectly attentu-
ated modes in the stopband region. The number of overlapped estimations primarily
influences the computational aspect. A larger c results in more computations; never-
theléss, a larger c allows for a larger filter transition band, thus allowing us to design
for a better filter stopband. Note that we can tolerate some non-flatness since we can
compensate for this effect in the amplitude coefficient estimation. However, a non-flat
passband increases the variance of the poles near the minima of the passband since
the filter reduces the power of these poles more than other poles in the passband.

After filtering and decimating the data, the stopband signal poles are aliases into
the band of interest. If the energy of the filtered stopband signal modes is small
relative to the in-band Gaussian noise, the estimation bias caused by the stopband
signal poles will be neglig;ble In comparison to the estimation variance. This implies
that for high SNR signals we need more stopband rejection in order to avoid the bias
problem. One should choose a filter length sufficient to attenuate out-of-band modes
to below the noise floor.

A procedure to design the FIR filter is presented here to minimize variance and
bias. First, based on SNR one can determine the needed stopband rejection to ensure
the leakage of the out-of-band signal poles is small relative to the in-band noise.
Then, one can choose the filter o;der [ and the number of the overlapped estimations
¢ to give the desired stopband rejection with a small transition band. Note that we

want [ and c to be as small as possible. For instance, in the example given below, we
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estimated according to the SNR that a 20dB stopband rejection is enough to avoid
the bias problem. After few trials, we found that using ¢ = 2d = 12 and [ = 20,
an equiripple FIR filter gives the approximated stopband rejection. Compromise was
made to sacrifice the flatness of the passband a little since we can compensate its

effect during the amplitude coefficient estimation.

C. Operation Counts

The main goal of applying the decimation procedure is a reduction in computa-
tions. In this section we compafe the computations of a full TLS-Prony estimation
applied to a nondecimated sequence to a set of those from a set of TLS-Prony esti-
mates obtained from a set of bandpass filtered and decimated sequences. We include
the computations associated with overlapping as well as those associated with the
filtering operation for this comparison.

In the operation counts which follow, we assume that only one of the interleaved

sets of decimated data is used in the decimation-based TLS-Prony algorithm (as in

m
3d

Equation (35)). In addition, we assume L = Z is used for the prediction order,
because this prediction order gives near optimal accuracy (see [10, 13] and Section V
below). We compute operation accounts for the SVD operation, the QR decompo-
sition, the polynomial root finding operation, and the filtering operation; these were

found to account for over 90% of the total operations in our computer simulations.
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1. SVD Operation Counts

For a real matrix which has dimension R x C, the approximate floating point
operation (flop) count associated with the “economical” SVD computation (in which
only the first C left singular vectors are computed) is given by £SVD ~ 14RC? +
8C3 [11]. For a complex rhatrix the count is about a factor of 2 larger. In our case,
" the matrix [ 3;’ Y ] has dimension R x C = (H—}EQN) X (-(m—&;—ll + 1). Therefore,

for the nondecimated case (d =1 and ! = 0) we thus get an SVD flop count of

SVD 2 m 2 m 3
fCnondec ~ 28 (gmN> ('3‘ + 1) + 16 ('g‘ + 1) ) (44)

and for the decimated case with ¢ overlap regions we obtain

“dec ~€ 3d 3d 3d .

2. QR Decomposition Operation Counts

For a real matrix, the approximate flop count associated with the QR decompo-
sition is given by QR ~ opc? - 203 [11]. For complex matrices, the count is to be
a factor of 4 larger. In our case, R x C = (ﬂj—l) X (";—;1) We thus obtain for the

nondecimated and decimated cases, respectively

chR _8m®  8m?

nondec =~ g9 ~ 8]’ (46)
and
QR _ (8(m =1 8m=-1)°?
fegec = ¢ 93 ~ 81d° : (47)

80




3. Polynomial Root Finding Operation Counts

For a real polynomial of order , the approximate flop count associated with the
root finding operation is given by fcTo0t 239n3 [11]. For complex data considered

the count is to be a factor of about 10 larger; in our case x = (’—’;%’) So we have

root ~ 200 4 ‘
fcnondec ~ 81 m-, (48)
and
200(m — 1)3

4. Filtering Operation Counts

For the decimated case, we must also include the operation count associated with
the filtering operation. From Equations (5) and (6), the approximate flop count

associated with the matrix multiplication induced by this filter is thus given by

€eC

fefilter ~ ¢ (TT;J(I +1 )) x 6. (50)

The factor of 6 arises because there are 6 flops (4 multiplies and 2 adds) per complex

multiplication.

V.  Examples and Simulation Studies

Examples using the statistical analysis results are presented here which demon-

strate the advantages of using decimation. Simulations are also presented for full
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spectrum data sets to demonstrate the estimation ability of the modified TLS-Prony
method developed in Section IV. Again, note that we are considering the case where

the extra interleaved data sets are discarded.

A. Single Undamped Mode

.In this example we assume one snapshot of data of length m = 140. We assume
a single exponential located on the unit circle and an SNR of 5dB. We compare esti-
mates of this exponential using no decimation and using decimation by d = 6. Using
the filter design procedure outlined above, we obtain an FIR filter whose frequency
response is shown in Figure 2. Here we used ¢ = 2d overlapped estimations and an
equiripple FIR filter of order [ = 20. Note that we could decrease the order of the
FIR filter to achieve the same stopband rejection, but in doing so we will obtain a
less flat passband, which results in increased variance. Note also that in this case we
do not have out-of-band sigvnal poles, so there will be'no bias in the pole estimates
(to a first order).

Figure 3 shows the theoretical variance of the estimated pole versus prediction
order for various decimation factors as compared to the CRB. From this figure we
can see that the minimum variance occurs at a lower prediction order for higher d.
The minimum occurs for a prediction order equal to about one third of the decimated
data length (i.e., L = 1—%:‘), which is consistent with results for nondecimated data [10,
13]. This shows that the best performance for the decimated cases occurs at lower

prediction orders than for the nondecimated case, thus reducing the computational
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Figure 2: Frequency response of the 20th order equiripple FIR filter.

load.

We note, however, that since the data has to be filtered prior to decimation, the
curves for the decimated cases peak at about 1.5dB lower than for the nondecimated
case for various decimation factors. The performance loss is due to the fact that
the transient response portion of the filter output (20 points for this case) needs to
be discarded. Note that for a fixed length FIR filter this performance degradation
becomes smaller as the data length is increased, since the percent difference between

the original and filtered data lengths decreases.
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Figure 3: lUlogvlU (CRB/Var(p)) for various d and prediction orders for a single un-

damped mode.
B. Two Undamped Modes

In a second example we make the same assumptions above, except that there are
two equal energy exponentials located on the unit circle one Fourier bin apart (i.e.,
Af =21 =) The total SNR is assumed to be 8dB in this case in order to maintain
5dB SNR/pole. Figure 4 shows the theoretical variance of the estimates for one of the
poles (the variance of the other pole is similar). We can see that the characteristics

are much the same as in the one pole case, the difference being higher variances due

tu the presence of each pole’s neighbor.
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Figure 4: 10log,, (CRB/Var(p;)) for various d and prediction orders for two un-

damped modes.
C.  Monte-Carlo Simulation of an Undamped Ten Mode Case

We now present a set of simulations for a general ten undamped mode case. In
these simulations we have N = 1 snapshot, and n = 10 poles present in the data. The
amplitude coefficients all have unit magnitude; the phases of the amplitude coefficients
are chosen randomly. We consider two data lengths, m = 140 and m = 560 data
points. Figure 5 shows the locations of the ten poles; each is indicated by an “x”.
Five-hundred independent Monte-Carlo simulations are performed by adding noise to
the data such that the total SNR is 20dB (10dB/pole). Estimates for the poles are
obtained using the TLS-Prony algorithm without decimation (i.e., d ='1) and with

decimation using a decimation factor of d = 6,
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Figure 5: True pole locations for an undamped ten mode case.

For the decimation results, the FIR filter is the same as the one used in the previous
examples and the frequency response was shown in'Figure 2 (thus, ¢ = 12 and | = 20).
The prediction order is L = I_ms—zlj; the numbers of singular values retained in the
simulations are 10 for d = 1 and the number of poles in each éubestimation section
for d = 6 ({2,3,2,0,1,1,2,2,0,1,3,3} for this case). Th¢ prediction orders used
correspond to one third of the effective data lengths in fhe two cases as was suggested
by Examples 1 and 2. Prior to the calculation of the amplitude coefficients, poles

1

with magnitude larger than 1.15 and smaller than 3 are eliminated to avoid poor

conditioning in the least squares solution of the amplitude coefficients.
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Table 1: Theoretical and simulation variances, and MSEs for the undamped ten poles,

m = 140 data point case (all values are in dB).

pole d=1 d=6
number | CRB | Theory | Sim. | Sim. MSE | Theory | Sim. Theory MSE | Sim. MSE
1 -63.4 | -61.8 |-61.5 -61.5 -60.5 | -60.6 -60.3 -60.4
2 -63.0 | -60.7 |-60.9 -60.8 -59.7 | -58.9 -59.5 | -88.7
3 -63.0 | -60.7 | -61.0 -60.9 -60.4 | -58.7 -89.9 -58.0
4 —63.6 -61.4 |-61.2 -61.2 -60.9 | -61.0 -60.9 -60.9
5 -63.4 | -62.3 |-62.3 -62.2 -60.6 | -60.4 -60.1 -59.9
6 -63.4 | -62.3 |-62.2 -62.2 -60.7 | -60.5 -60.4 -60.3
7 -63.5 | -61.4 | -61.1 -61.1 -61.0 | -60.8 -60.9 -60.7
8 |-55.0 | 514 |-51.0| -50.9 -47.3 | -48.4 -47.0 -48.1
9 -55.1 | -51.4 | -51.3 -51.1 -46.8 | -47.9 -46.5 -47.4
10 -63.4 | -61.8 |-61.6 -61.6 -99.6 | -59.6 -59.5 -39.6

1. Performance Comparison

Tables 1-3 summarize the performance of the various methods for this example.

We first consider Table 1 which shows the m = 140 data point case. From Table 1

we see that the Monte-Carlo variances for the d = 1 case were 1.2dB to 4.1dB away

from their CRBs. Note that the Monte-Carlo variances are within 0.5dB of those

predicted by the theory which substantiates the theory (the differences are due to
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the fact that theory is only a first order analysis). Note also that the estimates havé
negligible bias which is shown by the fact that the pole variances are very close to
their MSEs.

The Monte-Carlo variances for the d = 6 case were 2.6dB to 7.2dB away from
their CRBs. This represents an average 1.7dB loss for the entire d = 6 system
versus the nondecimated system. The main cause of the performance loss is the 20
data point loss due to the transient response of the FIR filter outputs. Note that
the Monte-Carlo variances are within 1.7dB of statistical theory. By comparing the
simulation variances and MSEs, we see that some of pole estimates are slightly biased.
When decimation is used, Theorem 4.1 gives an analytical expression for the this bias;
theoretical biases are compared to biases obtained from Monte-Carlo simulations with
good agreement in most cases.

If the data length is increased to m = 560 points, the theoretical and simulation
results show even better agreement, as is shown in Table 3. In this case, the overall loss
using decimation is less than 0.4dB compared to the nondecimated case. In addition,
the simulation variances are within 0.4dB of the theoretically derived variances, and

the bias of the pole estimates is significantly reduced.

2. Operation Count Comparison

The d = 1 and d = 6 estimation procedures are now compared on the basis of their
computational costs. We only compare the results for m = 140 data points. Using

MATLAB, the “economical” version of the SVD operation, the left division opera-
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Table 2: Theoretical and simulation biases for the poles (m = 140, unit= 1073)

pole
number Theory Sim.
1 0.078-0.179i | 0.088-0.196i
2 0.166-0.0331 | 0.255-0.037i
3 0.330+0.072i | 0.449+0.188i
4 0.04240.0851 | 0.005+0.100i
5 -0.082-0.3141 | -0.074-0.324i
6 0.08640.2051 | 0.018+0.184i
7 0.076-0.0771 | 0.067-0.1361
8 1.251-0.1711 | 0.847-0.693i
9 -1.121-0.470 | -1.134-0.625i
10 -0.095+0.142i | -0.04740.021i

tion (using QR decomposition to solve least squares problems), and the root finding
operations requifed an average of 16.5Mflops for each of the Monte-Carlo simulations
for the d = 1 case. Each of the twelve d = 6 SVDs, QR decompositions, polynomial
root findings, and filtering operations required an average of 53.7Kflops, resulting in
a total of 644.4Kflops for each Monte-iCarlo simulation. The computational savings
for the SVDs, QR decompositions, polynomial root findings, and filtering operations
in this example using decimation was thus a factor of about 25.6. This compares with

a savings factor of 24.0 which is predicted by Equations (44)-(50) for this scenario.
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Table 3: Theoretical and simulation variances, and MSEs for the poles for the 560

data point case (all values are in dB).

pole d=1 d=26
number | CRB | Theory | Sim. | Sim. MSE | Theory | Sim. | Theory MSE | Sim. MSE
1 -81.6 | -79.9 |-79.6 79.6 -79.7 | -79.8 -79.7 -79.8
2 -81.6 | -79.6 |-79.7 -19.7 -79.4 —79.4 -79.4 -79.3
3 -81.6 | -79.6 |-79.7 -79.7 -79.3 | -79.4 -79.3 -79.4
4 ST -T99 | -197 -79.6 -79.7 | -79.7 -78.9 -79.0
3 -81.6 | -79.8 |-79.8 -79.8 | -79.5 | -79.2 -79.4 -79.1
6 -81.6 | -79.8 |-79.7 -79.7 -7194 | -79.4 -79.1 -78.9
7 -81.7 1 -79.9 |-79.9 -79.8 -79.7 | -794 -79.6 -79.3
8 -81.6 | -79.9 | -80.0 -80.0 79.6 | -79.4 -79.0 -79.0
9 -81.6 | -80.0 | -80.0 -80.0 -79.5 | -79.4 -79.5 -79.4
10 -81.7 | -80.0 |-80.1 -80.1 -79.3 | -79.7 -79.3 -79.7

Note that these numbers cannot be computed directly in part due to differences be-
tween MATLAB’s SVD, QR decomposition, and root finding algorithms and the ones
used for operation counts in Equations (44)-(50). The average total flop counts (in-
cluding all operatious) for the nondecimated and decimated Monte-Carlo simulations
were 17.4Mflops and 698Kflops, respectively, to give a savings factor of 24.9. Note
that the four computational cost components we have detailed make up about 92%

of the total computations. With higher decimation factors the savings are even more
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substantial.

VI. Conclusions

In this paper we have developed a TLS-Prony estimation algorithm which incor- -
porates data decimation. We also have developed a statistical analysis for estimated
poles of this algorithm. We have shown through examples using this analysis that
decimation provides a minimum variance for estimated poles that occurs at a predic-
tion order which is smaller than the optimal prediction order for nondecimated data
by a factor of d, thus allowing for computational savings. We have shown that this
benefit is obtained at the expense of pole variance performance due to the filtering
which is required; this expense becomes smaller for longer data lengths. We have
also shown how the modified TLS-Prony method can be used on full spectrum data
one band at a time to realize the computational savings in a more general signal
framework.

With this decimation procedure, we are now able to make a well-quantified tradeoff

of accuracy for computation when using the TLS—Prohy estimation procedure.

Appendix: Proof of Theorem

From Equation (14) we can make the following substitutions
(5" +5) (v + b)) =~ (s+5), (51)
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where ' is the noise free version of 3, Y/ = &'+ &', y' = ¢’ + &, and V=0b+b.
We can see that the * terms are small perturbations for the high SNR case, which is

assumed. Multiplying out Equation (51) and retaining only the first order * terms

gives?
S+ 5 + S = —5' — &, (52)
Now note that S'0' = —s' since they are the noiseless terms. Equation (52) thus
becomes
S =~ (s'+5). (53)

Multiplying both sides through by $’S’* and noting that 5'S"*S’ = S’, we obtain
S =55 (& +5). (54)

Let Y = S'+ W' and y' = s’+w’, where W’ and .w' are the appropriate noise matrices
(i.e., of the form given in Equation (14) and composed of the noise sequences in Equa-
tion (12)). Thus we can see that S’ and s are perturbations caused by W', w', and
the SVD truncation. By using perturbation analysis [14] on the matrices [ s S ],

[ y Y’ J, and [ 3;' v }, it can be shown that to first order approximation
stla g ]=st]w w]. o)
Thus, Equation (54) can be written as

S’ = —§'S"*e, (56)

INote that the approximation is valid since the matrices [ {] .y ] and [ s -9 ] have

the same rank.




where € = w’ + W'V

Observing the data model and the formulation of the S’ matrix, we can write 5™

as

Slu —
or
Letting H =

z1(1)p} z2(1)py o (1)pt
- m(p z5(1)py* 2w (1)plH
(T gyt DY g
z3(2)p} z2(2)p4 2o (2)pY
1(2)p;+e z5(2)pete -

1:2(2)p121+m—(L+1)d

zn’(Q)Pufd

Ty (2)p::;f-m—(L+1)d

z1(N)py

LN )p']‘+d

z (1’\" )p114+m-(L+1)d

HoT gt

Equation (56) thus becomes

z2(N)ph

za(N)pyte

1‘2(N)p;+m-(L+1)d

S™ = H*G'.
T
Hd—lT ] , we get

S'=HG'.

HG'Y = —HG'S™e.
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zn(N)py

In’(N)Pu-M

n’

zar(N)p = ED

G,

(57)

(58)




Now note by definition that the true and estimated Lth order characteristic poly-

nomials are B(z) = 1+ b z+byz* +---+ b2

respectively. Hence B (p}) = 0 and B (Aﬁ) = 0.

L and B'(z) = 1+ 82+ 822

+...+[;7£ZL

We can use a first order Taylor expansion to find an expression for the error in

the estimated pole locations. For each 1;; we obtain

o - B()
= B'(p;)+a—zf§’(2)lz=:(24pi)+
- BG)-B (p;>+§:§<z>lz (-
A 1+ b+ b 4+ bt — (14 Bl 4 b
(b’—l—ZbgP,"r‘ —}-Lb’ ,L l)(p;‘"'p;)
G-y
~ [pi P -,pi-L] e +[b'1 b
| b - b, |
- [pi pi piL}(&‘bl)”If@_pi)’

or. to first order.
(0 —pi) =

Thus, for all of the n’ true poles we obtain

I
T [ v v

P

(higher order terms)

P — p,) + ((higher order terms)

W e+ bplE)
1
2p;
b, |
Ly
pik ] b.

P = —F'G'b.

(63)

Since H is full rank (this can be seen by noting that each block of rows is simply
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a Vandermonde matrix derived from distinct poles times a diagonal matrix of the

nonzero amplitude coefficients), we can multiply Equation (60) by (H*H)™ H* to

get

G'Y = —G' S,

and, by substituting Equation (64) into Equation (63), we obtain

P — P = F'G'S"e.

We now note that [ W W ] “] can be written as

B'e(1)
B'e®(2)

B'ell(l )
B'e"(2)

B/C/d~l(2)

B/EIO(]\:)

BICII(]V)

B'e'd_l(l)

B'K°(s7(1) + ¢(1))
B'K°(s™(2) + ¢(2))

B'K°(s"(N) + e(N))

B'K'(s™(1) + e(1))
B'K'(s™(2) + €(2))

B'KY(s™(N) + ¢(N))

B'K¥1(s™(1) + ¢(1))
B'K971(s7(2) + €(2))

i B'K%1(s"(N) + ¢(N))

(64)

(66)




where

4T
SO = [ S ) 0 Dhoan ) 0! v Tzl )™ |+ 67

and where B’ and K* are given by Equations (30) and (31). Recall {e(t)} are zero

mean Gaussian and thus € is multivariate Gaussian with mean
Ele]= Pc’? _ (68)

where P! is in the form of Equation (66) without the e(t)’s, and covariance matrix
1 I7\*
o9 = £[([w w ][ ([ w L]
= 0%, (69)

where ¥, is given by Equation (28).
Equations (65), (68) and (69) imply that the mean and covariance matrix of P

are given by Equation (27). O
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.RESOLUTION BOUND AND DETECTION RESULTS FOR SCATTERING CENTERS®

William M. Steedly,! Ching-Hui J. Ying,! and Randolph L. Moses?
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INTRODUCTION

This paper is o“vith det bom and estimation of
the scatiering centers of a target coberent, stepped
frequency measurements. In particular, we are interested
in the following questions: 1) bow closely spaced can
scattering centers be before it is impossible to resclve
them, and 2) what is the relationship between the detec-
tion probability of a scattering center and the false alarm
probability as a function of scattering center SNR.

To address these questions, we hypothesize a paramet-
ric wodel of target scattering. This model dssumes the
frequency-domain scattering to be a sum of exponential
terms. If the exponential terms are undamped, then the
model specializes to a point-scatterer assumption. If the
exponential terms are not undamped, the model incorpo-
rates frequency-dependent radar cross sectiozn of scatter-
ing centers (see (1)). We consider a particular class of al-
gorit for estimating the p s in this exp
tial model, the so-called total-least squares (TLS) Prony
algorithm (2). The TLS-Prony technique has gained
popularity as & parameter estimation algorithm for the
P tial mode! b it provides accurate parame-
ter estimates at moderate computational cost (3); it has
also been successfully applied to botk one-dimensional
and two-dimensi ] radar scattering data (4,5).

Under the exponential model assumption of scattering.
the lution and 4 ion bounds can be reformu-
lated in terms of parameter estimation accuracy for
the exponential model. We present the asymptotic (as
SNR = oo) probability density function (pdf) for the

P tial mode! p et timates using the TLS.
Prony algorithm. We then use this asymptotic pdf to
detive scattering center resolution and detection bound
for the TLS-Prony algorithm, and compare these results
to Cramér-Rao bound (CHB) results. Monte-Carlo sim-

Jations are also pr d to compare with the theory.
The resolution bounds are obtained from the standard
deviation bounds of the pole angles in the exp tial

dels. The d : h ds are obtai d by .

ering the probability that the epergy of ap estimated
mode exceeds a pre-defined thresbold. In each case, the
probabilities are obtained by considering a high-SNR ap-
proximation of the statistical probabilities of exp tial
mode] parameter estimates.

One of the advantages of 8 model-based scattering cen-
ter estimation p dure is the capabdility of resolving
sckttering centers more accurately than is possible using
fast Fourier Transform (FFT) techniques. We show that
for sufficiently bigh SNR, both the CRB resolution and
the TLS-Prony resolution is better than can be obtained
using the FFT.

*THIS RESEARCH WAS SUPPORTED IN PART
BY THE AIR FORCE OFFICE OF SCIENTIFIC RE
S8EARCH, THE AVIONICS DIVISION, WRIGHT LAB-
ORATORIES, AND THE SURVEILLANCE DIVISION,
ROME LABORATORIES.

DATA MODEL AND T1S PRONY
ESTIMATION PROCEDURE

Rats Model

Assume the data vector y of length m is modeled as &
soisy exponential soquence

" =2:ip,'+e, ¢=01,....m-1 (1)

=)

There are n distinct expopential modes in the data.
Here, it is assumed that {e,} is a sero mean complex -

white Gaussian noise seq with o. Equa.
tion 1 may be compactly written as
y=Azte, 2)

where ¢ (m x 1) and z (n x 1) are vectors, and

1 1 e
O T ) :
A= . . 3)

TLS-Prony Estimation Procedure

In this subsection we give an overview of the TLS-Prony
techaique (2) which is used to esti the 6
of

the exponential model p d in Equation 2.
First, Lth order backward linear prediction equations are
formed:

v Y1[}]=0 ®
where
b=ib & - b |7 ()
and where
4 B
[y Y]= : : : (6)
Ym—(141) Pm=i °**° Pm-i

In general, L > n; however, choosing L > n results in
more accurate parameter astimates (6).

The solution of Equation 4 involves obtaining an SVD of
the matrix [ ¥y Y ] and truncating all but the first n

siogular values to arrive at an estimate [ § ¥ ]. The
linw prediction coefficient vector estimate b is found as
b= <Y*y, where * denotes the Moore-Penrose pseu-
doinverse. Finally, the pole estimates are found by

;= sero, (5(3)). i=1,2,..,L. (7)

where §(x) =14bse -4 brst. Onee the poles bave
been determined, the amplitude coefficients can be found
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as the least squares solution to
2 1 2 e
AR H NS e e
awey 2wl 2w -3

R e m

Note that L mode estimates are obtained, of which n
are “true” modes. For L > n, L - n of the mode esti-
mates are extraneous. If n is known then the true modes
can be identified as the n highest energy estimates (3).
However, in practice n is typically unknows; in this case
the pumber of singular values retained is & fixed upper
bound of n, and true modes could be separated from ex-
traseous modes by waing & mode energy threshold (as
discussed below).

BIATISTICAL ANALYSIS

In order to establish a resolution bound and probabili-
ties of detection and false alarm, we peed the statistics
{for the estimated parameters in the TLS-Prony model.
For the resolution bounds and detection probabilities, we
seed only the statistics for the “true” modes (that is, the
w modes with highest energies). For this case. the statis-
tics of the parameter estimates have been found in (3,7).
Bowever, for the false alarm probability, we also need
the statistics of the L = extraneous modes. The deriva-
tion of the ext mode statistics app in (8); the
main result is summarised in the following Theorem.

Tlu".vcm 1: Assume y is a2 given iv Equation 1. Letp =

{P.)n, a0d 2z = {2,)_, beas in Equation 1, and let p* =
{p)s" and =* & {2!}:7" denote the L —n extraneous

-3

modes obtained in the ’ﬂ‘.S-Pmy procedure when ¢ ="

0. Let 6 denote the 4L x 1 vector containing the angles
ud_‘magnitudes of p, 2, p°, and z°, respectively, and
Jet 6 denote the TLS-Prony estimate of 6. Then the
asymptotic (as ¢ — 0) probability density function of 6

is Gaussian: -

@~ N(b,0- L), (9)
where I, is s covari ix which depends oa m, L,
and {2,,p,)5,.

The proof of the Theorem and an explicit expression for
Ly, can be found in (8). Also in (8) is an expression for
Zy when € is reparameterized in terms of the real and
imaginary parts of the poles and amplitude coefficients.
We pote that the above Th gives a th jcal ex-
pression for the complete pdf of the estimmated parame-
ters; this pdf can then be used to study the resolution
properties and detection probabilities of scattering cen-
ters, as is discussed below.

A RESOLUTION CRITERION AND BOUND
ANALYSIS

Consider two poles on the unit circle, p, = ;¢! and
P2 = aze’”?. We define the resolution limit r as

r=o,, +20,,, (10)

where the angle variances of p, and p; are 02, and 2, ,
respectively. When two poles are at this limit, the 954
confidence intervals of the angle estimates for each pole
become disjoint.

The CRB resolution limit is found by using CRB ex-
pressions for the pole angles in two pole model. The
CRBs for the pole angles are inserted into 0., and o,
in Equation 10; such expressions can be found, for ex-
ample, in (9). This limit gives a lower bound for all

unbiased estimators since it is besod on the CRB. The
vesolution limit for the TLS-Prony estimation algorithm
is similarly given by using pole angle wariance statistics
for the true poles; these are readily obtained from o - £,
(vee (8)).

Bound Analysis for Two Undamped Modes

In this stody we consider two equal mnergy modes located
oo the unit circle at p; = ¢'*//™ qnd p; = ¢~/
for & data length of m = 10, where f is the separation
of the two modes in Fourier bins. For the TLS-Prony
simulations & prediction order of L = 4 was used.

Figure 1 shows the bounds for the CRB, TLS-Prony sta-
tistical tbeory, and TLS-Prony Monte-Carlo results. The
axes are normalised to tnake the curves independent of
data length for the CRB curve and the TLS-Prony sta-
tistical theory curve. From these curves we can see that
the TLS-Prony theoretical bound is quite close to the
CRB over a wide range of SNR. Recall that the CRB
and TLS-Prony bounds are both derived using small
perturbation analysis, so hold only for high SNR. The
TLS-Prony Monte Carlo simulations show good agree-
ment with the theoretical bound above 15 dB SNR. We
can see that above 20dB SNR/pole/bin the TLS-Prony
smetbod virtually achieves the CRB.

Below 20dB SNR/pole /bin, the Monte-Carlo simulations
ive much higher variance than both the theoretical TLS-
rony curve and the CRB curve. Note, however, that

the TLS-Prony asalytical variance expression was de-

rived under the assumption of high SNR, and is not ex-
pected to be accurate at Jow SNR_ In addition. the CRB
is Dot pecessarily a tight bound at low SNR. Thus, it
is not clear what the minimum achievable variance is in
this region. For example, it is not known whether (or
bow much) an iterative i likelihood proced
would result in lower variance in this region.

We note that above about 18 dB SNR/pole/bin, the
TLS-Prony technique gives lutions of less than one
Fourier bin. Therefore, the resolution of the TLS-Prony
technique is better than FFT-based techniques since
FFT-based tochniques can ounly resolve to within ove
Fourier bin. M windowing is used in conjunction with
the FFT-based metbods, their resolution is even larger
tbas one Fourier bin (e.g., it would be about 1.8 Fourier
bins using a Bamming window).

DERIVATION OF PROBABILITIES OF
RETECTION AND FALSE ALARM

In practice, one does pot know s priori bow many scat-
tering centers are present. In this case, one would accept
©or reject & mode estimate as & scattering center based on
some thresbold. We ider a threshold on the energy
of the estimated exponential mode, as this corresponds
to radar cross section of an estimated scattering center.

In the TLS-Prony method, one obtains estimates of L
poles and L corresponding amplitude coefficients. From

this, one can compute the energy E, of each of the L
modes by

E =) o j=12..L )
quo

where 8, and a, are the magnitudes of the jth ampli-
tude coefficient and pole, respectively. We consider an
estimated mode to be detected as & valid scattering cen-
ter if its energy ds & prespecified thresbold, and we

101




mecttbenodennhvnhdwwm;eumihtdou
sot. We then can p t detection Its in the form
of receiver opa'thon characteristic (ROC) curves

Probability of Detection

We define a detection to be the case in which all of the
true mode energy estimates exooed an energy threshold,
E°. We thus now derive the energy statistioa for the
true modes (i.e., 5 = 1,2,...,m). These statistics can
be found from the mtuhal pdf given in Theorem 1
1t ca be shown (8) that the energies are noncentral x*
distributed; for high SNR, the noncentral x° dutnbutxon
is well-approximated by a Gaussian distributi
first-order approximati it is ible to derive the
wean and covariance of thil diltribution Thus, from
Theorem 1 we bave the following corollary.

Corollsry 1: Let
E=|E E - EV, 12)

denote the parameter vector for the mode energies of
the true modes (i.e., the mode energies corresponding
to p and z). Let E denote the estimated energies corre-
sponding to the TLS-Prony parameter estimates. Then
the asymptotic (as ¢ — 0) pdf of E is given by

E~N(E,c-Tp), (13)

where Ix depends on m, L, and {z,,p.}0;: Ab explicit
expression for Lr can be found ir (8).

Given the true mode energy distribution, the probabilty
of detection, Pp, is given by

Pp=Pr (i:‘, >E,E > E,....E >£°). 4

This probability is readily puted using Equation 13.

To verify that the theoretical energy distribution given
above, Monte-Carlo simulations were performed for a
two mode case. In this case, the data consists of two
equal energy modes, with 2; = 2; = 1, located on the
unit circle spaced one Fourier bin apart at p, = &¥*/™
and p; = e773*/™ for » data Jength of m = 10. A pre-
diction order of L = 4 was used, and two singular val-
ues were retained. The SNR for these simulations was
10dB/pole.

Figure 2 shows s comparison between the theoretical pdf
and s histogram obtained from Monte-Carlo simulations
(note that both modes have the same theoretical pdis
and bad similar histograms). It can be seen thast the
theoretical energy distribution is 8 good approximation
to simulation results in this case.

Probability of False Alarm

We define o false alarm to be the case in which one or
more of the extraneous modes is above the energy thresh-
old, E°, and thus misidentified as & true mode. We
can derive the statistal properties of the estimated ex-
traneous mode energies in a similar manper as above. In
this case, however, the “true™ energies of the extraneous
modes are sero, so the extraneous modes are distributed
as central Chi-squared with two degrees of freedom, x}
(oee (8)). This is stated in the following corollary.

-y b=n

Corollary 2: Let {E,' denote the estimated en-
o3

ergies corresponding to the TLS-Prony parameter esti-
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mates of the extraneous mode epergios. Then the asymp-
totic (as ¢ — 0) pdis of these energies are given by

Fi~x}(o-Ts;) i=12..,0l-n  (15)

where I5: does not depend oo ¢. An explicit expression
for Iz; can be found in (8).

Given the extraneous mode epergy distributions, the
probabiity of false alarm, Fp4, is given by

Pu-l-?:(f:} <EB.E<P,.  E_ <£").

(16)
Note that since the extraneons mode energy distribution
is Chi-squared with two degrees of freedom, Py, can be
evalusted nsing a Rayleigh distribution.

Figure 3 shows a comparison between the theoretical pdf
for the extraneous modes in the previous two modes
example and a histogram obtained from Monte-Carlo
simulations. Note that the theoretical predictions agree
closely with Monte-Carlo simuiations.

ROC Anpalysis for Two Undamped Modes

Using the above detection and false alarm probability
results, we can derive ROC curves for scattering cen-
ter detection st various SNRs. Figure 4 presents such
curves for the case comsidered in Figures 2 and 3, but
with varying SNR (note that 1 = Pp is actually plotted
along the vertical axis). For an SNR at or sbove 10dB
per pole, Fp udnynuboveOBmvhen Pr4 is very
small (e.g., 1077). However this is not the case for lower
SNR. Note that for low SNRs Pp pever reaches one even
if Pra is ope. This is because the true mode energy dis-
tributions were approximated as Gaussian. and the tail
of this Gaussian distribution gives a sonzero probability
of & negative energy (the noncentral x3 distribution does
not have such a tail). For high SNR, the approximation
becomes more valid.

In computing the curves in Figure 4, it was assumed
that the extraneous mode energy distributions are inde-
pendent. Note that this is s worst case assumption, since
Pr 4 would decrease if the extraneous mode energies were
dependent.

CONCLUSJONS

In the paper we preseated resolution bounds and detec-
tion results for estimating the scattering centers. These
bounds are based on an exponential model of target scat-
tering. which generalizes the point scattering model. The
popular TLS-Prony algorithm was used to estimate the
parameters of the exponential model. A high SNR sta-
tistical analysis of the TLS-Prony algorithm was first
presented. Then, based on the results of the statistical
analysis. both resolution bounds and detection resuits
were presented. The resolution bounds were compared
with both the Cramér-Rao Bound and with Monte-Carlo
simulations. It was shown that for an SNR above 18 dB,
the TLS-Prony method is capable of resolution to less
than a Fourier bix.

The probabilities of the detection and the the false alarm
were derived based ob the mode energy distributions for
both the true and the extraneous modes. For high SNR
true mode energy distributions can be approximated as
Gaussian distributions, but extraneous mode energy dis-
tributions are central chi-squared distributed. These de-
tection and false alarm probabilities can be presented as
ROC curves for scattering center detection for examples
of interest.
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Figure 3: Extraneous mode theoretical pdf and his.
togram for two equal energy undamped modes.
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D. Reprint of “Prony Modeling of Linear FM Radar Data”

The following pages contain a preprint of the technical report, “Prony Modeling of
Linear FM Radar Data”.
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PRONY MODELING OF LINEAR FM RADAR DATA

Ching-Hui J. Ying and Randolph L. Moses

Department of Electrical Engineering
The Ohio State University
Columbus, Ohio 43210

Abstract

In this report some preliminary research results on the parametric modeling of linear
FM radar data are presented. Superimposed exponential signals are used to model
the data. The model parameters are then estimated by the TLS-Prony estimator. In
addition to the TLS-Prony algorithm, a modified algorithm incorporating the TLS-
Prony estimator and a residue concept is proposed to estimate the parameters. The
estimates from the modified algorithm are then improved by a maximum likelihood
estimator since the residue algorithm introduces bias on the estimates. The estimation
results are compared to the results from the fast Fourier transform technique. The
issue of reduced bandwidth is also considered in this report.
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I. Introduction

This report presents some preliminary research on the parametric modeling of
linear FM radar data. Based on the scattering center assumption the data are modeled

by superimposed exponential signals [1],
yo=d zpi+e ¢=01,....m—1, (1)
=1

where n is the number of the scattering centers and m is the number of frequency
measurements. In addition, each p; is a pole corresponding to a scattering center,
each a; is the amplitude associated with that pole, and e, is measurement noise.

The problem is to estimate the parameters in the exponential model. Many al-
gorithms have been developed to achieve this objective. One of the most popular
methods is the TLS-Prony algorithm [2]. Numerical studies and statistical analysis
have shown that for high SNR, the TLS-Prony estimator is unbiased and has very
promising performance. Details about the TLS-Prony analysis can be found in {3].
In this report we are concerned about how the TLS-Prony algorithm performs with
respect to the traditional fast Fourier transform (FFT) technique, when applied to

‘radar data. For this study we use linear FM radar data of an aircraft that was
collected at Rome Laboratories.

In addition, a modified algorithm incorporating TLS-Prony and a residue concept
is proposed. The parameter estimates from the modified algorithm then are improved
by a maximum likelihood estimator (MLE) sixice the residue algorithm introduces bias
on the parameter estimates. The MLE presented here is a complex version of the MLE

presented in [4].
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Bandwidth reduction is also considered in the report. Theoretically, parametric
modeling has no resolution limit (practically, of course, this is not the case). Here
we would like to know how parametric modeling performance degrades as bandwidth
is reduced. The TLS-Prony estimation performance with reduced bandwidth is com-
pared to full bandwidth performance of the FFT technique.

An outline of this report is as follows. Section II presents the TLS-Prony algorithm
and the modified algorithm. In Section III, the estimated results from both algorithms
are compared to each other and to the FFT technique as well. Section IV conciudes

this report.

II. Estimation Algorithms

A.  TLS-Prony Algorithm

Based on the data sequence in Equation (1), backward linear prediction equations

are formulated as:

where

b:[b] b ... I,L]T, (3)
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and where

Yo Y1 Y2 e YL

/51 Y2 Y3 ) 25 |

[y;Y]= : : : : . @

Ym—(L+1) Ym-L Ym—(L-1) " Ym-1
Here L is the order of prediction and b is the coeflicient vector of the polynomial B(z)
given by

B(z) =1+ bz + b2 + -+ +br2". (5)
For the noiseless case, L can be any integer greater than or equal to the model order

n; however, choosing L > n results in more accurate parameter estimates.

The solution of Equation (2) involves obtaining an SVD of the matrix [ y : Y ]
and truncating all but the first n singular values to arrive at an estimate [ 7 o Y ]
[2]. This leads to the modified linear prediction equation

Yb=—7 (6)
from which the linear prediction coeficient vector estimate b is found as
b=-Y*g, (7)

where * denotes the Moore-Penrose pseudoinverse. Finally, the estimates for the

poles are found by
p; = zero; (B(z)) , j=1,2,...,L. (8)

" Note that for high frequency radar target responses, the scattering is specular and

thus the poles are very near the unit circle. That is, the magnitudes of the estimated
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poles are close to unity. Before estimating the amplitude coefficients we thus force
the estimated poles to be on the unit circle (by setting the magnitude to be one). It
is believed this constraint on the poles may give better results. Here we will focus on
the constraint case.

Once the poles have been determined, the amplitude coefficients can be found
using the pole estimates and Equation (1). This leads to the following least squares

equation for the amplitude coefficients,

1 1 1 i T Yo
7,
P P2 o PL Y1
zy
T i Rl oy (9)
. zr
- i;;n—] ]’57271-—1 L. ﬁ'zi--] - L - i Ym—1 ]
or
A\LXL =~ Ya (10)

The amplitude coefficients can be found from a least squares solution to Equation (10),
37 T 7 -1 'R v n s
Xy = (A;AL) ApY. = AfY., (11)

where = denotes complex conjugate transpose. Because only n singular values of
[ 7 1% ] are nonzero, there are at most n pole estimates which can correspond to
data modes. Therefore, only the n poles which have the largest energy are retained.

This is done by computing the L mode energies as

N m—1
E;=3 [l 2 Il i=12...,1L )
t=1 g=0
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and retaining those n poles whose corresponding energies are highest. We then re-
estimate the amplitude coefficients of these n poles. This is done using Equation (11),
except that Ay is replaced by A, where A is the Vandermonde matrix composed only

of the n columns of A, corresponding to the n highest energy poles.

B. A Modified TLS-Prony Algorithm Incorporating a Residue Concept

A modified algorithm incorporating the TLS-Prony algorithm with a residue con-
C.ept-.is proposed here. After estimating the parameters via the TLS-Prony algorithm,
we can use Equation (1) to create the estimated data sequence. Assuming perfect
modeling on the true signals the difference between the measurement data sequence
and the estimated data sequence would be the noise sequence only. However, since
the modeling is not perfect, the residue contains some information about the data.

This motivates the following algorithm.

e Use the estimated parameters from TLS-Prony to create the estimated data
sequence via Equation (1). Subtract this sequence from the original sequence,

giving a residual data sequence.

e Usc the TLS-Prony algorithm on the residual data sequence to obtain residue
model parameters. Combine the two sets of parameters (the set from the original

measurement data and the set from the residual data).
e Use a maximum likelihood estimator (MLE) to improve the combined estimates.

The MLE is used to overcome bias resulting {from estimating the two parameter

sets separately. The MLE chosen is the complex version of the MLE presented in [4].
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III. Results

In this report a Hamming window is always used to reduced the sidelobes at
the cost of losing resolution. The results shown here will only focus on one of the
seventeen data sequences since these sequences are responses for the same target, and

are nearly identical to one another.

A. Some Comparisons using the data sequence wb0001

In Figure 1 the magnitude of the inverse FFT (IFFT) of the 1024 point data
sequence wb0001 using a Hamming window ié shown. The high energy section of this
IFFT is shown in Figure 2. We will use this result as a standard to compare the
estimates from both the constrained TLS-Prony algorithm and the modified TLS-
Prony coupled with the residue and MLE algorithm.

The estimation result for the constrained TLS-Prony élgorithm using the original
data is compared to the IFFT of the original data in Figure 3 (the solid line is for the
estimated data and the broken line is the original data). Although the estimated data
do not fit the original data very well, from Figure 4, which shows the line spectrum of
the TLS-Prony estimates, we can see that at some points (as indicated in the figure)
we superresolve closely spaced scattering centers.

For the modified algorithm the results are even better and shown in Figures 5
and 6. In Figure 5 it is clear that the estimated data (solid line) fit the original data
(broken line) very well. The line spectrum in Figure 6 shows the superresol{'ability
of the modified algorithm. Many scattering centers not seen in the original data are

clear now. This extra resolution is obtained at the cost of increased computation.
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In the modified algorithm we use TLS-Prony twice, which doubles the computation.
In addition, the computational cost of the MLE has to be added. On average the
computation for the modified algorithm is four times that of the computation for the -

constrained TLS-Prony algorithm.
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The IFFT of the original data sequence wb0001
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Figure 1: The IFFT of the original data sequence.

The IFFT of the original data sequence wb00O01 (zoom)
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Figure 2: The high energy section of the IFFT of the original data sequence.
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IFFTs of the estimated sequence (TLS-Prony) and the original data
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Figure 3: The IFFTs of the original data sequence and the estimated data sequence

by the TLS-Prony algorithm using the original data.

The line spectrum of the estimated sequence (TLS-Prony (1024))
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Figure 4: The line spectrum of the TLS-Prony estimates using the original data.
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IFFTs of the estimated sequence (mod. algo.) and the original data
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Figure 5: The IFFTs of the original data sequence and the estimated data sequence

by the modified algorithm using the original data.

The line spectrum of the estimated sequence (mod. algo. (1024))
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Figure 6: The line spectrum of the modified algorithm estimates using the original

data.
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B. Reduced bandwidth consideration

In the previous subsection we have shown that the modeling techniques based on
the TLS-Prony algorithm give very promising results, and outperform the conven-
tional FFT technique in terms of resolving closely spaced scattering centers. This
motivates the following question. If a smaller set of the original data sequence is
used, is the performance of these modeling techniques still good enough to compete
with the FFT techniques using full bandwidth? We investigate this question using
some results based on’the same set of data as before.

In Figure 7 the IFFTs of the original data (broken line) and the esi:imates from
fhe TLS-Prony algorithm using the middle 512 points (solid line) are shown. The
corresponding line spectrum is shown below in Figure 8. Here we can see that the
~estimate is not impressive. In fact, the TLS-Prony algorithm misses some of the
scattering centers (as indicated in the figure). However the results from the modified
* algorithm are much better. They are shown in Figures 9 and 10. These figures are
analogous to Figures 7 and 8 except the modified aléorithm is used. It is clear from
these figures that the modified algorithm obtains all the scattering centers shown
for the FFT technique, and it also even superresolves some closely spaced scattering
centers. This suggests that the required bandwidth can be reduced by a factor of two

when the modified algorithm is used.
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IFFTs of the estimated sequence -Prony(512)) and the data (1024)
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Figure 7: The IFFTs of the original data sequence and the estimated data sequence

by the TLS-Prony algorithm using the middle 512 points of the original data .

The line spectrum of the estimated sequence (TLS-Prony (512))
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Figure 8: The line spectrum of the TLS-Prony estimates using the middle 512 points

of the original data.
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IFFTs of the estimated sequence (mod. alg.(512)) and the data (1024)
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Figure 9: The IFFTs of the original data sequence and the estimated data sequence

by the modified algorithm using the middle 512 points of the original data.

The line spectrum of the estimated sequence (mod. algo. (512))
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Figure 10: The line spectrum of the modified algorithm estimates using the middle

512 points of the original data.




IFFTs of the estimated sequence (TLS-Prony(256)) and the data (1024)
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Figure 11: The IFFTs of the original data sequence and the estimated data sequence

by the TLS-Prony algorithm using the middle 256 points of the original data.

In Figures 11, 12, 13, and 14 we show the results for using the middle 256 points
of the original data sequence. For the TLS-Prony algorithm (in Figures 11 and 12)
several scattering centers are missed. For the modified algorithm, however, the results
are more encouraging. These results are shown in Figures 13 and 14. Some scattering

centers are still missed, but not the stronger scattering centers.
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The line spectrum of the estimated sequence (TLS-Prony (256))
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Figure 12: The line spectrum of the TLS-Prony estimates using the middle 256 points

of the original data.

IFFTs of the estimated sequence {(mod.algo.(256)) and the data (1024)
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Figure 13: The IFFTs of the original data sequence and the estimated data sequence

by the modified algorithin using the 256 points of the original data.
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The line spectrum of the estimated sequence (mod. algo. (256))
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Figure 14: The line spectrum of the modified algorithm estimates using the middle

256 points of the original data.
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IV. Conclusions

In this report we presented some preliminary results on parametric modeling of
linear FM radar dapa collected at Rome Laboratories. Modeling techniques and the
conventional FFT technique were compared. We focused on the TLS-Prony algorithm
and proposed a modified algorithm incorporating TLS-Prony, a residue concept, and
MLE. Several issues were discussed in the report. First, for the same bandwidth,
the modeling techniques used in general outperform the FFT technique, especially
the modified algorithm. In addition, we found that using the modified algorithm
we may reduce the bandwidth by a factor of two without losing the performance in
comparison to the FFT technique. Further investigation is needed on the modified

algorithm in order to fully understand its performance.
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